AIRCRAFT AND TECHNOLOGY CONCEPTS FOR AN N+3 SUBSONIC TRANSPORT

MIT, Aurora Flights Science, and Pratt & Whitney

Elena de la Rosa Blanco May 27, 2010

1

The information in this document should not be disclosed to a third party without written permission.

Message

- Defined documented scenario and aircraft requirements
- Created two conceptual aircraft: D (double-bubble) Series and H (Hybrid Wing Body) Series
 - D Series for domestic size meets fuel burn, LTO NOx, and balanced field length N+3 goals, provides significant step change in noise
 - H Series for international size meets LTO NOx and balanced field length N+3 goals
 - D Series aircraft configuration with current levels of technology can provide major benefits
- Developed first-principles methodology to simultaneously optimize airframe, engine, and operations
- Generated risk assessment and technology roadmaps for configurations and enabling technologies

Project Enabled by University-Industry Collaboration

- MIT
 - (GTL) Propulsion, noise, (ACDL) aircraft configurations, systems, (ICAT) air transportation, and (PARTNER) aircraft-environment interaction
 - Student engagement (education)
- Aurora Flight Sciences
 - Aircraft components and subsystem technology; Aerostructures and manufacturing; System integration
- Pratt & Whitney
 - Propulsion; System integration assessment
- Collaboration and teaming
 - Assessment of fundamental limits on aircraft and engine performance
 - Seamless teaming within organizations AND between organizations

NASA System Level Metrics

.... technology for dramatically improving noise, emissions, performance

CORNERS OF THE TRADE SPACE	N+1 (2015)*** Generation Conventional Tube and Wing (relative to B737/CFM56)	N+2 (2020)*** Generation Unconventional Hybrid Wing Body (relative to B777/GE90)	N+3 (2025)*** Generation Advanced Aircraft Concepts (relative to user defined reference)
Noise	- 32 dB (cum below Stage 4)	- 42 dB (cum below Stage 4)	-71 dB (cum below Stage 4)
LTO NOx Emissions (below CAEP 6)	-60%	-75%	better than -75%
Performance: Aircraft Fuel Burn	-33%**	-40%**	better than -70%
Performance: Field Length	-33%	-50%	exploit metro-plex* concepts

N+3

- Energy intensity metric for comparison of fuel burn
- Add a climate impact metric for evaluation of the aircraft performance
 - Global temperature change as a result of the emissions

Three Major Results from N+3 Program

- Development and assessment of two aircraft configurations:
 - D Series for domestic size meets fuel burn, LTO NOx, and balanced field length N+3 goals, provides significant step change in noise
 - H Series for international size meets LTO NOx and balanced field length N+3 goals
- Comparison of D Series and H Series for different missions (domestic and international)
- Trade study identification of D Series benefits from configuration vs. advanced technologies

Two Scenario-Driven Configurations

D and **H** Series Fuel Burn for Different Missions

- D Series has better performance than H Series for missions examined
- H Series performance improves at international size

Fuel Burn Baselines and Results

D Series Configuration is a Key Innovation

9

D8 Configurations: Design and Performance

D8 – Double Bubble Configuration with current technologies

- Double bubble lifting fuselage with pi-tail
- Engines flush-mounted at aft fuselage with boundary layer ingestion; engine noise shielding and extended rearward liners
- Reduced cruise Mach number with unswept wings and optimized cruise altitude
- Eliminates slats
- BFL = 5000 feet

D8.5 Airframe Technology Overview

Operations Modifications:

- Reduced Cruise Mach:0.72 for D8.1 and 0.74 for D8.5
- Optimized Cruise Altitude: 40,000 ft. for D8.1 and 45,000 ft. for D8.5
- Descent angle of 4°
- Approach Runway Displacement Threshold

D8.5 Engine Technology Overview

Design Modification Sequence from B737-800 to D8.1 and D8.5

- Case 0: B737-800
- Case 1: Optimized B737-800
- Case 2: Fuselage replacement from tube+wing to double bubble
- Case 3: Reduced cruise Mach number from 0.8 to 0.72
- Case 4: Engines flush-mounted on top, rear fuselage
- Case 5: 2010 Engine technology
- Case 6: Slats elimination
- Case 7 (D8.1): Balanced Field Length reduced from 8000 ft. to 5000 ft.
- Case 8: Faired Undercarriage
- Case 9: 2035 Engine technology
- Case 10: Advanced Airframe materials and processes
- Case 11: Natural laminar flow on bottom wing
- Case 12: Airframe loads reduction
- Case 13: Approach operations
- Case 14 (D8.5): LDI combustor

Fuel burn evolution from B737-800 to D8.1 and D8.5

LTO NOx evolution from B737-800 to D8.1 and D8.5

Noise evolution from B737-800 to D8.1 and D8.5

B737 → D8 Study–Main Observations

- Improvement arises from integration and exploitation of indirect benefits – there is no one "magic bullet"
- Design methodology allows exploration of interactions
- D8 fuselage alone is slightly draggier than B737's, but enables...
 - lighter wing
 - smaller lighter tails
 - enables fuselage BLI
 - smaller, lighter engines
 - shorter, lighter landing gear
 - ... etc

D8 BLI Approach

Engines ingesting full upper surface boundary layer

- Entire upper fuselage BL ingested
- Exploits natural aft fuselage static pressure field
 - Fuselage's potential flow has local M = 0.6 at fan face
 - No additional required diffusion into fan
 - No generation of streamwise vorticity
 - Distortion is a smoothly stratified total pressure

Improved Load/Unload Time and Airport Capacity

- **<u>Climate change impact</u>**. D8 results on over 80% climate improvement from ۲ B737-800
- Improved Load/Unload Time. D8.5 provides reduction in block time during ۲ load and unload and approach operations

Airport capacity. D8 could allow for increased airport capacity due to wake ۰ vortex strength reduction

First principle innovative aircraft design optimization tool (M. Drela)

TASOPT (Transport Aircraft System OPTimization)

- Modelled on a first-principles basis, NOT from correlations
- Simultaneously optimizes airframe, engine, and operations parameters for given mission
- Developed in modules so easily integrated with other tools
- Generate required output files for detailed aeroelastic and aerodynamic analysis
- Allows aircraft optimization with constraints on noise, balanced field length, and other environmental parameters

Summary

- Established documented scenario and aircraft requirements
- Created two conceptual aircraft: D (double-bubble) Series and H (Hybrid Wing Body) Series
 - D Series for domestic size meets fuel burn, LTO NOx, and balanced field length N+3 goals, provides significant step change in noise
 - H Series for international size meets LTO NOx and balanced field length goals
 - D Series aircraft configuration with current levels of technology can provide major benefits
- First-principles methodology developed to simultaneously optimize airframe, engine, and operations
- Generated risk assessment and technology roadmaps for configurations and enabling technologies

Elena de la Rosa Blanco (edlrosab@mit.edu)

Link to presentation: http://www.nasa.gov/topics/aeronautics/ features/future_airplanes.html