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Objectives — Subsonics Fixed Wing

Develop the necessary technologies to enable low emissions
(gaseous and particulate) combustion systems to be developed for

subsonic engine applications.

Develop the fundamental technologies to assess the feasibility of
alternative fuels in subsonic aircraft applications.

Develop and validate physics-based models to enable quantitative
emissions and performance predictions using Combustion CFD
simulations.
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NASA Subsonic Transport System Level Metrics
.... technology for dramatically improving noise, emissions, & performance

]

N+1 (2015)*** N+2 (2020)*** N+3 (2025)***
CORNERS OF THE Technology Benefits Technology Benefits Technology Benefits
TRADE SPACE Relative to a Relative to a
Single Aisle Reference Large Twin Aisle Reference
Configuration Configuration
Noise
(cum below Stage 4) -32d8 -42dB -71dB
LTO NOx Emissions AN0 780 750
(below CAEP 6) 60% 75% better than -75%
Performance: 33%** 40%** better than -70%
Aircraft Fuel Burn
P -33% -50% exploit metroplex* concepts
Field Length

*** Technology Readiness Level for key technologies = 4-6

** Additional gains may be possible through operational improvements

* Concepts that enable optimal use of runways at multiple airports within the metropolitan areas

SFW Approach

- Conduct Discipline-based Foundational Research
- Investigate Advanced Multi-Discipline Based Concepts and Technologies

- Reduce Uncertainty in Multi-Disciplinary Design and Analysis Tools and Processes
- Enable Major Changes in Engine Cycle/Airframe Configurations
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Subsonics Fixed Wing @
Combustion Discipline

Technical Approach

 NASA Research Announcement (NRA)
« Combustion Fundamental Research
— Alternative Fuels
— Fundamental Experiments
— Physics-Based Model Development
« Combustion Technologies and Tool Development
— Combustion CFD Code Development and Application
— Low-emissions Combustion Concepts
« Multidisciplinary Analysis and Optimization
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Supersonics

Technical Challenges

« Environmental impact of supersonic cruise emissions is greater
due to higher flight altitudes which makes emissions reduction
Increasingly important.

» Accurate prediction tools to enable combustor designs that
reduce emissions at supersonic cruise are needed as well as
intelligent systems to minimize emissions.

« Combustor operating conditions at supersonic cruise are
different than at subsonic cruise since inlet fuel and air
temperatures are considerably increased.
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Capability Metrics for Future Supersonic Aircraft
NASA's Initial View

(pass-miles per Ib of fuel)

N+1 N+2 N+3
Supersonic Small Efficient Multi-
Business Supersonic Mach Aircraft
Class Aircraft | Airliner (2020)| (Beyond 2030)
(2015)
Environmental Goals
65-70 PLdB
. Low Boom flight
Sonic Boom 65-70 PLdB 65-70 PldB 75-80 PIdB
Overwater flight
LAl D G szl 10 EPNdB | 10-20 EPNdB
(cum below stage 4) Margin
Cruise Emissions Equivalent to <5 & particulate
(Cruise NOx glkg of fuel) current_ < 10 and water vapor
Subsonic mitigation
Performance Goal s
Cruise Speed Mach 1.6-1.8| Mach 1.6 -1.8/ Mach 1.3 - 2.0
Range (n.mi.) 4000 4000 4000 - 5500
Payload (passengers) 6-20 35-70 100 - 200
Fuel Efficiency 1.0 3.0 3.5 - 4.5

N+1 “Conventional

N+2 Small Supersonic Airliner

N+3 Efficient, Multi Mach Aircraft
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Supersonics
Technical Approach

 NASA Research Announcement
« Emissions Prediction and Modeling

— Physics-based model development for combustion CFD
codes for improved supersonic cruise emissions predictions

« Diagnostics and Validation Experiments

— Laser-based diagnostics development for quantitative major
species and temperature measurements

— CFD code validation experiments at supersonic cruise
conditions

 Low Emission Concepts
— Low NOx emission concept development
— Active combustion control

« High Temperature Sensors
— High temperature sensor development



Alternative Aviation Fuel eXperiment (AAFEX) @
Obijective

1) Examine the effects of alternative fuels on engine
performance and emissions

3) Investigate the factors that control volatile aerosol
formation and growth in aging aircraft exhaust plumes

4) Establish aircraft APU emission characteristics and
examine their dependence on fuel composition

/) Evaluate new instruments and sampling techniques

8) Inter-compare measurements from different groups to
establish expected range of variation between test

venues
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Summary of AAFEX Experiment Plan @

Location: NASA Dryden Aircraft Operation Facility
Dates: January 20 — February 3, 2009

Sponsors: NASA, Air Force, EPA, FAA

Aircraft: DC-8 with CFM56-2 engines

Fuels: 1--Standard JP-8

2-- Fischer-Tropsch Fuel from Natural Gas (FT1)
3--50/50 JP-8/FT1 blend

4-- Fischer-Tropsch fuel from Coal (FT2)
5--50/50 JP-8/FT2 blend

Runtime: ~35 hours total
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AAFEX Test Site Arrangement

Boeing, GE, Pratt and Whitney, CMU, Harvard, MSU, UCSD, and UTRC also participated
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Primary Exhaust Measurements @

* Certification species: CO,, CO, THC, NOx and Smoke
Number

e Hazardous Air Pollutants (HAPS): Acrolein, Benzene, etc.
* Green House Gases (CO2, CH4, H20)

* Total Particle and Black Carbon Mass

 Particle Number Density and Size Distribution

* Single Particle Composition

* Bulk Aerosol Composition

* Black carbon morphology



Exhaust Sampled at Multiple Locations @

Identical 1 and 30 m inlets behind left and right inboard engines
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Complex Sampling Apparatus Used at 1-m @/

I = Sample A— Section A-A
[ ] =water
[] =Diluent

Aerosol Dilution Probes

S

1-m rakes populated with gas, aerosol, pressure and temperature probes
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Plume Chemistry Studied with Van and 150m Trailer

-]

Aerodyne van and
downstream trailers
equipped with sensitive
f=="| particle and trace gas
| | sensors

|
2. -

Van drove back and forth
across exhaust plume at
increasing distances as Aé_—_

i A
=

the aircraft was idling ) -

Parar——
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Temperature Varied Widely During Tests @
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The experiment matrix included 13 engine and 3 APU test runs;

burned >25,000 gallons of fuel in over 35 hours of testing.
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FT Fuels Caused Fuel Leaks @

Leaks vanished as soon as aromatic-containing fuel introduced
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FT Fuels Greatly Reduce Particle Emissions

30% power, 1 m inlet
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* Particle size highly dependent on fuel composition

 Particle concentrations only slightly above background in FT plume at low engine
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* Lack of aromatics suppresses soot formation even at high power

e Lack of sulfur and aromatics reduces rates of volatile aerosol nucleation in

sampling lines
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Particle Numbers Densities Reduced by 60 to 95% @
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Particle Mass Emissions Reduced by 75 to 90% @
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FT Fuels also Reduce HAPS Emissions

benzene (ppbv)
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Much Learned about Temperature Dependence of Emission@

JP-8 Fuel, Ground Idle, 30 m inlet
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Data very important for developing and validating plume models
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Aux Power Unit sampled while it burned JP8 and FT2

G

APUs are small, low-bypass turbojet engines; emissions are not regulated
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FT Fuel Greatly Reduces APU Particle Emissions
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APU emits 25x more black carbon per
kg fuel at idle than an aircraft engine

Mass emissions 90% lower when
burning FT fuel
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Engine #3 Corrected N1 vs Fuel Flow rate @
for all fuels — Heating Value correction

Corrected Fuel Flowrate, Lbs /Hr
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NOx Emissions
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CO Emissions
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SO2 Emissions
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Alternative Fuel Testing using NASA 9-point LDI

9-Point LDI

Flame Images
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Alternative Fuels Research Laboratory @

F-T Reactor Product Samples 12-18-09

 New Alternative Fuel Laboratory mechanical
construction completed, finished functionality
check-out, and secured safety permit for
operation

» Initial campaign of Fischer-Tropsch synthesis
reaction with a base-line cobalt catalyst
completed in December, 2009

Collaboration with the University of Kentucky

Activated a cobalt catalyst with a novel
preservation method developed at GRC

Operated Fischer-Tropsch reactor at base-line
conditions for comparison with future catalyst
development

Conducting product analysis to determine reactor
yields and hydrocarbon conversions

30
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SE-11 Particle Altitude Simulation Laboratory Exhaust Plume @
Studies

Exhaust plume studies at sea level using JP-8 and F-T fuel conducted (NASA
GRC, LaRC, Aerodyne) with sulfuric acid and anthracene added to exhaust to
simulate fuels with various sulfur levels and engine oil in the exhaust
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BioFuels As An Alternative Fuel Source For Aviation

reenLab Research Facility

Arak

Seashore mallow

= GreenlLab Research Facility designed to optimize saltwater
algal, halophytes and other biomass species for potential use as
aviation biofuels. Contains seven unique ecosystems
representing various soil/water salinities, several states of
climatic adaptation total life cycle system laboratory and field
trial data.

= Over 800 GreenLab visitors in 2009 including three
congressional visits , including State Department International
Visitor Leadership Program (IVLP) delgation (2009).

= ldentified three optimal halophytes species (S. virginica, S.
europea, S. bigelovii) out of 26 potential candidates worldwide
using high throughput screening that do not use freshwater,
arable land or compete with food crops.

= Collaborations with Boeing, Evogene, DOE, Seambiotic The
University of Arizona and The University of Delaware to optimize
lipid extraction for saltwater algae ,halophytes and other oil-seed
plants..

AR

" Inor uelsa Salicornia bigelovii

4 Collaboration with the University of Delaware field study to

; g . demonstrate the feasibility of salinitizing Kosteletzkya virginica —
Seashore mallow in Delaware bay Seashore mallow as an alternative biofuel biomass source.




