High-Fidelity MDO for Future Aircraft Configurations

Joaquim R. R.A. Martins

Aerospace Multidisciplinary Design Optimization Laboratory University of Michigan

2nd UTIAS-MITACS International Workshop on Aviation and Climate Change Toronto, May 2010

Aircraft Design for Minimum Environmental Impact

Single Objective Optimization

Minimization of Fuel Burn per Distance Flown

Minimization of Fuel Burn per Distance Flown

Multi-Objective Optimization

(Jansen, Perez and Martins, 2010)

(b)

MDO of Very Flexible Aeroservoelastic Wings

MDO of Very Flexible Aeroservoelastic Wings

(Haghighat, Martins and Liu, 2009)

High-Fidelity Analysis and Optimization

- As high-fidelity models mature, the questions becomes: How do we use these models to design a system?
- Multidisciplinary design optimization provides an approach

Challenges

- Cost of function evaluations
- Large number of design variables

The Case for Efficient Sensitivity Analysis

- Use gradient-based optimizer when possible
- By default, most gradientbased optimizers use finite differences
- When using finite differences with large numbers of design variables, sensitivity analysis is the bottleneck
- Accurate sensitivities needed for convergence

Aerostructural Optimization

(Martins, Alonso and Reuther, 2004)

 $C_D = 0.007395$ Weight = 9,285 lbs

Von Mises stresses (maneuver) 0.0

Aerostructural Optimization

(Martins, Alonso and Reuther, 2004)

Geometry: B-Spline Surfaces

(Kenway and Martins, 2010)

Geometry: Free-Form Deformation

(Kenway and Martins, 2010)

Finite-Element Structural Analysis

(Kennedy and Martins, 2010)

Finite-Element Structural Analysis

(Kennedy and Martins, 2010)

Finite-Element Structural Analysis

(Kennedy and Martins, 2010)

Aerostructural Coupling

(Kennedy, Kenway, and Martins, 2010)

Aerodynamic Shape Optimization with Stability Constraints

(Mader, Martins, 2010)

Aerodynamic Shape Optimization with Stability Constraints

(Mader, Martins, 2010)

Wing Box Structural Topology Optimization

(James and Martins, 2008)

Wing Box Structural Topology Optimization

(James and Martins, 2008)

Aerostructural Topology Optimization with Pressurization Loads

(Lee and Martins, 2011?)

Acknowledgements: Students

Thank You!

