
Modelling the transition to a more-
electric aviation system

Lynnette Dray 

Air Transportation Systems Laboratory, 

UCL Energy Institute, University College London 

Toronto, 17 May 2018



Background

• Future developments in aviation depend on the interaction of 
multiple stakeholders across different geographic scopes

• Airlines, airports, passengers, regulators, manufacturers...

• Complex relationships between capacity, scheduling, fleet, passenger 
demand, networks etc.

• Multiple projects at UCL ATSLab exploring these interactions:

• AIM2015, an open-source integrated modelling tool for the global 
aviation system

• Airport Capacity Consequences Leveraging Aviation Integrated 
Modelling (ACCLAIM)

• Additionally models airline behaviour and how this interacts with capacity 
expansion

• Systems Aspects of Electric Commercial Aircraft (SAECA)

• Applying these modelling capabilities to assess the feasibility of an 
electric aircraft system



Motivation - 1

• Current projected global aviation RPK growth rates of 4-
5%/year (Airbus, Boeing)

• 2-3%/year reductions possible in fuel lifecycle CO2/RPK (Schäfer
et al. 2016, Dray et al. 2018)

• Requires a combination of technology, operations, alternative fuels etc.

• Under these assumptions aviation CO2 will continue to grow

• Compare emissions targets:

• 80% reduction in GHG from 
1990 – 2050 (EU); 60% for 
transport

• IPCC AR5: ‘Likely’ remaining 
below 2°C temperature rise -
40-70% global GHG reduction 
from 2010 – 2050

[Source: EU 2050 Low-carbon economy strategy]



Motivation - 2

• Currently the largest projected aviation reductions come from 
drop-in biofuel 
• Cellulosic biomass fuels offer ~ 80% reduction in fuel lifecycle CO2 (e.g. 

Schäfer et al. 2016)

• Drop-in allows use in current aircraft 

• Still combustion at altitude - contrails, NOx, etc.

• Highly uncertain – depends on supply, land use, other sectors

Biomass 
+ CCS

• But electricity 
generation is 
potentially even less 
carbon-intensive 

[Data: IIASA EMF27 Scenario database]



How feasible is an electric aircraft system?

• Multiple designs in development/testing

• Hybrid and/or turboelectric designs use jet fuel to generate power for 
an electric motor - limited benefits

• All-electric aircraft (AEA) use only batteries for energy

• Light/VTOL/air taxi concepts include: 

• Airbus E-Fan

• Liaoning Ruixiang RX1E (in production)

• Uber Elevate

• Narrowbody AEA concepts include:

• 328/328-LBME2 (Hepperle 2012)

• Wright One (in development)

• Bauhaus Luftfahrt Ce-Liner

• MIT/SAECA designs used in this work (Gnadt et al., forthcoming)



Limitations

• Battery energy density

• Range/capacity depend on future 
battery technology improvements

• Even with these, range is limited 
(likely < 900 nm, maybe < 500 nm)

• Battery specific power

• Affects takeoff

• If lower specific power:

• Longer runway needed

• More takeoff noise (than comparable 
AEA with higher battery specific power)

• Cooling systems

• Also depend on future technology

• Rate/method of charging

• Affects turnaround (charge) and/or costs (swap) 

Battery Theoretical 
Wh/kg

Expected 
Wh/kg, 2025

Li-ion 390 250

Li-S 2570 500-1250

Li-O2 3500 800-1750

[Data: Sabre, year 2015 schedules]

[Data: Hepperle, 2012; Gnadt et al., 2018]

Narrowbody AEA need roughly 
800+ Wh/kg for 500+ nm range  



Modelling an electric aviation system

Solve iteratively 
(AIM2015)

OR

Optimise profit 
per airline (Airline 
Behaviour Model)

• Use the AIM2015 model

• See www.atslab.org for more information/papers



Scope

• Flights 
between 
1169 
airports in 
878 cities 
modelled

• 2015 base 
year

• Future projections to 2050 and beyond:
• Given projections of population, GDP/capita, oil price, technology etc.

• Includes uncertainty
• Lens approach for technologies

• Plus a range of input scenarios



Extra inputs/outputs for electric aircraft

• Electric aircraft performance model (MIT)

• Operating cost study

• Turnaround strategies

• Future scenarios for electricity cost/carbon intensity

• Electric grid implications

• Noise study (University of Southampton)



Electric Aircraft Performance Model (MIT)
• See Gnadt et al. (updated version, upcoming)

• Transport Aircraft System OPTimization – electric (TASOPTe)

• Simultaneous optimization of airframe, propulsor, operations

• Uses first-principles methods

• For SAECA:
• Takeoff length limited to 2.4 km (8,000 ft)

• 4.5o climb angle; top-of-climb gradient ≧ 1.5%

• Battery specific energy: 1,500 Wh/kg, 20% reserve 

• A320 geometry; 2-6 propulsors

• Design range: 900 nm (1,667 km) by 2050

• RJs based on 328-LBME2 (Hepperle 2012) 

• Assume availability from 2035 (2030-2040) with initial range of 
450 nm

• These assumptions are relatively optimistic



Operating cost study

• Al Zayat et al (2017)

• Electrification affects:

• Maintenance and capital costs

• Fuel costs

• En-route/airport landing charges

• Outcome dependent 
on:

• Battery characteristics

• Future fuel prices

• Seems to be a feasible 
economic window 

[Figure: Schäfer et al., in preparation]



Turnaround study

• Strategies depend on distance and swap/charge option

• Assumes 20% reserve battery

• For AIM, minimum turnaround time assumed unchanged

• Strategies for disrupted operations (e.g. diversion) not 
explored, but would likely be different



Scenario inputs

• Sample model inputs, 
starting from IPCC SSP 
scenarios

• These runs assume:

❑ Mid-range values 
(SSP1,2,4)

❑ No carbon price

❑ 3%/year decrease in 
future carbon intensity 
of electricity generation

❑ Electricity price tends to 
$0.05/kWh by 2100, all 
countries

[Data: IEA, 2017; IPCC, 2015; DECC, 2015]



Model outputs

• Under input 
assumptions, electric 
aircraft are adopted

❑ NPV model for 
adoption

❑ + S-curve early/late 
adoption model

❑ Main factors are 
relative fuel costs and 
range limit

❑ Project 30-45% of fleet 
could be electric by 
2070

[Past data: FlightGlobal, 2017; 
Note AIM runs use interim demand model]



Network

• Range-
dependent

• In the most 
constrained 
cases only a very 
local network is 
possible 

[Data: Sabre, 2017 (from 2015 global schedules)]

• At 900nm:
❑ Could substitute ∼

70% of current flights

❑ < 30 % of fuel/CO2 can 
be substituted

❑ Long-haul growing 
faster than short-haul



Emissions and electricity demand

• Large impact on compatible route CO2

• BUT compatible routes account for a 
small fraction of global CO2

Small narrowbodies, global

• End result is only ∼ 10% global CO2

reduction from non-electric baseline

❑ Still may be important as part of a basket of 
future measures

❑ Local impacts can be significant

• Extra electricity demand relatively small
❑ E.g. Electrifying 80% of current UK 

narrowbodies would add ~4% to UK demand



Noise study (University of Southampton)

• Expect changes in electric 
aircraft noise due to:
❑ Higher MTOW

❑ (Much) higher landing weight

▪ Batteries remain the same weight 
throughout the flight

❑ Potentially different climb angle

▪ Depends on battery specific power 
assumptions

❑ Different engines

• Not necessarily quieter

• Noise signatures will be significantly different to conventional 
aircraft

❑ Understanding public acceptability requires further research

• Airport-area NOx and PM likely to reduce significantly 



Conclusions

• Electric aircraft are probably:

❑ Technically feasible, given expected improvements in battery tech

❑ Cost-effective in at least some scenarios

❑ Compatible with (some) current operations

BUT

• Overall impact on aviation emissions is small without 
significant network/demand change

❑ Range limit is key constraint

❑ Steeply reduces short-haul emissions

❑ However, long-haul is growing faster

Upcoming papers with MIT building on/updating SAECA study: 
see www.atslab.org for updates



For more information: 
www.atslab.org
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