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Background

e Future developments in aviation depend on the interaction of
multiple stakeholders across different geographic scopes

« Airlines, airports, passengers, regulators, manufacturers...

 Complexrelationships between capacity, scheduling, fleet, passenger
demand, networks etc.

 Multiple projects at UCL ATSLab exploring these interactions:

 AIM2015, an open-source integrated modelling tool for the global
aviation system

* Airport Capacity Consequences Leveraging Aviation Integrated
Modelling (ACCLAIM)

* Additionally models airline behaviour and how this interacts with capacity
expansion

e Systems Aspects of Electric Commercial Aircraft (SAECA)

* Applying these modelling capabilities to assess the feasibility of an
electric aircraft system
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Motivation- 1

* Current projected global aviation RPK growth rates of 4-

5%/year (Airbus, Boeing)

* 2-3%/year reductions possible in fuel lifecycle CO,/RPK (Schafer

et al. 2016, Dray et al. 2018)

* Requires a combination of technology, operations, alternative fuels etc.

* Under these assumptions aviation CO, will continue to grow

* Compare emissions targets:

e 80% reductionin GHG from
1990 — 2050 (EU); 60% for
transport

* |PCC ARS5: ‘Likely’ remaining
below 2°C temperature rise -
40-70% global GHG reduction
from 2010 - 2050
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Motivation - 2

e Currently the largest projected aviation reductions come from
drop-in biofuel

* Cellulosic biomass fuels offer ~ 80% reduction in fuel lifecycle CO, (e.g.
Schafer et al. 2016)

Drop-in allows use in currentaircraft
Still combustion at altitude - contrails, NOx, etc.
Highly uncertain — depends on supply, land use, other sectors

e But electricity
generation is
potentially even less
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How feasibleis an electric aircraft system?

e Multiple designs in development/testing

* Hybrid and/or turboelectric designs use jet fuel to generate power for
an electric motor - limited benefits

* All-electric aircraft (AEA) use only batteries for energy
* Light/VTOL/air taxi concepts include:

e Airbus E-Fan

* Liaoning Ruixiang RX1E (in production)

 Uber Elevate

 Narrowbody AEA concepts include:
* 328/328-LBME?(Hepperle 2012) \ »
Wright One (in development) '
e Bauhaus Luftfahrt Ce-Liner :
 MIT/SAECA designs used in this work (Gnadt et al., forthcoming)
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Limitations

Battery | Theoretical | Expected
Wh/kg Wh/kg, 2025

/ 4 q ¢ Li-ion 390 250

* Range/capacity depend on future ,

battery technology improvements S 20 01250
Li-O, 3500 800-1750

* Battery energy density

* Even with these, range is limited
(likely < 900 nm, maybe < 500 nm) Narrowbody AEA need roughly

. 800+ Wh/kg for 500+ nm range
e Battery specific power
* Affects takeoff

* If lower specific power: 3000

[Data: Hepperle, 2012; Gnadtet al., 2018]
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» Affects turnaround (charge) and/or costs (swap)
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Modelling an electric aviation system
 Use the AIM2015 model
* See www.atslab.org for more information/papers
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Scope

* Flights
between
1169
airports in
878 cities
modelled

e 2015 base
year

Flights/day
5§ — 10 = 15 = 20

* Future projections to 2050 and beyond:
* Given projections of population, GDP/capita, oil price, technology etc.

* Includes uncertainty
* Lensapproach for technologies
* Plus arange of input scenarios
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Extra inputs/outputs for electric aircraft

e Electric aircraft performance model (MIT)

* QOperating cost study

 Turnaround strategies

* Future scenarios for electricity cost/carbon intensity
* Electric grid implications

e Noise study (University of Southampton)
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Electric Aircraft Performance Model (MIT)

e See Gnadt et al. (updated version, upcoming)

Transport Aircraft System OPTimization — electric (TASOPTe)
* Simultaneous optimization of airframe, propulsor, operations
e Uses first-principles methods

* For SAECA:

Takeoff length limited to 2.4 km (8,000 ft)
4.5° climb angle; top-of-climb gradient = 1.5%
Battery specific energy: 1,500 Wh/kg, 20% reserve

A320 geometry; 2-6 propulsors
Design range: 900 nm (1,667 km) by 2050

* RIls based on 328-LBME? (Hepperle 2012)

e Assume availability from 2035 (2030-2040) with initial range of

450 nm
 These assumptions are relatively optimistic
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Operating cost study
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e Al Zayat et al (2017)
e Electrification affects:
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Turnaround study
» Strategies depend on distance and swap/charge option
830 km Trip Length (22 MWh) 1,260 km Trip Length (30 MWh)
T
46 MWh D /—\ f . 46 MWh [ f .
40 min
i §. & 1:
Etc. min <40 min

* Assumes 20% reserve battery
* For AIM, minimum turnaround time assumed unchanged

» Strategies for disrupted operations (e.g. diversion) not
explored, but would likely be different
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Scenario inputs

e Sample model inputs,
starting from IPCC SSP
scenarios

e These runs assume:

o Mid-range values
(SSP1,2,4)

No carbon price

3%/year decrease in
future carbon intensity
of electricity generation

Electricity price tends to
$0.05/kWh by 2100, all
countries
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Model outputs

e Under input
assumptions, electric
aircraft are adopted

a NPV model for
adoption

a + S-curve early/late
adoption model

a Main factors are
relative fuel costs and
range limit

a Project 30-45% of fleet
could be electric by
2070
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[Past data: FlightGlobal, 2017,
Note AIM runs use interim demand model]
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Network

e Range-
dependent
* Inthe most

constrained
cases only a very

local network is Distance V "
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Emissionsand electricity demand

Small narrowbodies, global

. . 80 -
e large impact on compatible route CO, = ~- Sshil | __ Reference
. N 601 - SSP4
e BUT compatible routes account fora ¢ |
small fraction of global CO, £
X g
% 107 - - SSP1 - o
Is) ] — SSP2 T T T T
s °° . sSSP 8 8 § B8 §
= 06 8 8RR
§ 0.4 .
5, e End result is only ~ 10% global CO,
E reduction from non-electric baseline
E I I I I I
0.1
ER a Still may be important as part of a basket of
3 0' future measures
No 1
g 02- o Local impacts can be significant
§ 031 " gom e Extra electricity demand relatively small
---- SSP4
041 — o E.g. Electrifying 80% of current UK
g & & § ¢ narrowbodies would add ~4% to UK demand

Year




Air Transportation &
Systems Lab

Noise study (University of Southampton)

e Expect changes in electric
aircraft noise due to:

2 Higher MTOW N e

o (Much) higher landing weight

sral [

= Batteries remain the same weight
throughout the flight

o Potentially different climb angle

= Dependson battery specific power | _ : _
assumptions e

A330neo

o Different engines
e Not necessarily quieter

e Noise signatures will be significantly different to conventional
aircraft

o Understanding public acceptability requires further research

e Airport-area NOx and PM likely to reduce significantly
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Conclusions

e Electric aircraft are probably:
a Technically feasible, given expected improvements in battery tech
o Cost-effectivein at least some scenarios
o Compatible with (some) current operations

BUT

e QOverall impact on aviation emissions is small without
significant network/demand change
o Range limit is key constraint
o Steeply reduces short-haul emissions
o However, long-haul is growing faster

Upcoming papers with MIT building on/updating SAECA study:
see www.atslab.org for updates
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