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Atmospheric effects of aviation
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Overview:
1.) Where is this ozone produced?

Radiative Forcing in 2005 from
historical aviation emission

2.) News on total RF-NO,:
Is it really decreasing?

CO,
{ Ozone (fast)

v
3.) Can we predict the RF-NO,

Methane

N9 ozone (PMO) -~ from weather forecasts?
Total NO, Level of Scientific
Water vapour Understanding -

(LoSU) varies _ _ _
between individual | 4.) Climate-optimal routing:

effects Updates

Sulphate aerosol (direct)
Soot aerosol (direct)

Aerosol (incl. clouds) ® X Y

Line-shaped contrails -'ﬁ'—'

.............

Induced cirrus

Contrall cirrus AN oo
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RF [mW m?]
(® Sdévde et al. (2014): EMAC, multi-model mean /\ Burkhardt and Karcher (2011)
& Righi et al. (2013): reference case, parameter span (O Schumann and Graf (2013)
¢ Voigt et al. (2011) <> Schumann et al. (2015)

\/ Bock and Burkhardt (2016)
Grewe et al. (2017)

Data are based on Lee et al (2009) with update from various more recent publications
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The NO,-O;-CH, chemistry
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Modelling overview: Grids and processes
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Weather data and Ozone Climate-Change-Functions
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Where ozone is produced?

Concept of “main ozone latitude, altitude, and time”;

The main ozone gain latitude @, of an emission location (identified with the index j) is
defined as the mean latitude at which the air parcel trajectories experience most of
the ozone increase.

= Ozone gain weighted latitude:

Ozone increase from t-Attot Latitude of trajectory i at time t

)G{I%ﬂz ) (Pz(f) Step 1:
Aji= Z dt  Contribution to the ozone gain

Gain; _
=1 f O ( t)dt latitude from a single trajectory
) = Z Ajia Step 2:
/ =1 Contribution to the ozone gain
j: emission location i trajectory number latitude from all trajectories

Fromming et al. 2018

i DLR
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3 Case studies:

High pressure ridge (HPR) (300 trajectories)
West of high pressure ridge (300 trajectories)
Jet stream location (450 trajectories)

___Frémming et al. 2018

L
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PDFs of the ozone galn altitude
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« Emissions in the HPR have a main contribution to ozone at lower altitudes
« Large difference between HPR and location west of the HPR
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PDFs of the ozone gain latitude
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 Emissions in the HPR have a faster ozone gain
« Large difference between HPR and location west of the HPR
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Ozone increase along trajectories

Medium ozone
increase in mid-
atitude regions
around 15 days
after emission

Large ozone increase in tropical regions
around 10 days after emission

Fromming et al. 2018
Grewe et al. 2017
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2. Part:
News on total RF-NO,: Is it really decreasing?
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Radiative Forcing from aviation NO, Emission [mW/m?]

Lee et al. | Additional | Methane
2009 Processes | Lifetime

NO,—~0Ozone 26.3
NO,~>Methane -12.5
Methane->Ozone
Methane—->H,0

Total 13.8
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Radiative Forcing from aviation NO, Emission [mW/m?]

Lee et al. | Additional | Methane
2009 Processes | Lifetime

NO,—~0Ozone 26.3 26.3
NO,~>Methane -12.5 -12.5
Methane->Ozone ~-4.0
Methane—->H,0 ~-2.5
Total 13.8 7.3
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Radiative Forcing from aviation NO, Emission [mW/m?]

Methane has a perturbation lifetime of 12 years
Here a steady-state is assumed: Methane responses immediately to NO, emission
Myhre et al. (2011) (QUANTIFY): Taking the lifetime into account, delays the impact

Lee ot al. | Additional | Methane
2009 Processes | Lifetime

NO,—~>Ozone 6.3 26.3 26.3
NO,~>Methane -12.5 -12.5 -8.1
Methane->Ozone -4.0 ~-2.6
Methane—>H,0 ~-2.5 ~-1.6
Total 13.8 7.3 14.0
Summary:
- New processes (Methane->0zone/H,0) reduce NOx RF NO, emissions

- Appropriate consideration of methane lifetime enhance NOx RF are relevant
- EI-NOx generally increases
- Fuel consumption increases

DLR
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3. Part:
Can we predict the RF-NO, from weather forecasts?

i DLR
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Weather data and Ozone Climate-Change-Functions
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Verification of the Algorithmic SESAR X
Climate Change Functions: Approach
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ATMA4E WP5 Management > Intermediate Review, 18 May2017 20
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Verification of the Algorithmic SESAR +*
Climate Change Functions: Model
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Verification result SESAR ¥x-
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Air traffic management for environment: SESAR '
SESAR/H2020-Project ATMAE
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Matthes et al. (2017)

ATMA4E Overview > Sigrun Matthes, DLR > Intermediate Review, 18 May 2017 23



DLR.de « Chart24  >Aviation Workshop Toronto > V. Grewe * May 2018

Air traffic management for environment: SESAR al
SESAR/H2020-Project ATMAE
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4. Part:
Climate-optimal routing: Updates
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Avoiding climate sensitive regions: The approach

Traffic scenario: Respresentative weather situations
Roughly 800 North Atlantic Flights
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Climatology based on 8 representative weather pattern
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Summary

* NO, has a different impact on climate, depending on where it is emitted
within a weather system.

 Taking into account new processes (PMO, Strat H,0O) and corrections in the
CH, calculation: NO,-RF should be in the same order as in the 2009 Lee
assessment.

* NO, impact on ozone is largely driven by initial transport pathway:
algorithmic climate-change functions

 Verification shows a proof of concept on the basis of an ESM including an
air traffic simulator.

 Avoiding climate sensitive regions leads to a reduction of the aviation's
climate impact at relatively low costs (eco-efficient).

» A couple of important questions remain before it may become operational
 Outlook: Forecasting of non-CO, effects on a daily basis,

i DLR
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solutions to the growth of air travel.
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