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I BLI reduces wasted KE in combined jet+wake (mixing losses)

I Long known to have large potential, never realized for aircraft

I Ambiguous decomposition into drag and thrust
(airframe) (propulsion system)

) use of power balance instead of force accounting
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Summary

I Closer integration of propulsion system and airframe provides new
opportunities to reduce fuel burn and emissions of commercial aircraft

I Boundary layer ingestion (BLI)

I Novel configurations

I System optimization (airframe, engine, operations)

I Flow power and dissipation in power balance framework
provide useful metrics for integrated configurations

I D8 wind tunnel tests
I Quantification of aerodynamic BLI benefit
I Proof-of-concept for use of BLI in transport aircraft

I Aerodynamic framework developed to analyze aircraft with BLI
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Phase 1: D8 Aircraft Concept
2008-2010

MIT N+3  D8.2
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I B737-800/A320 class

I 180 PAX, 3,000 nm range

I Double-bubble lifting fuselage
with pi-tail

I Two aft, flush-mounted engines
ingest ⇠ 40% of fuselage BL

I Cruise Mach 0.72

�37% fuel with current tech
(configuration)

�66% fuel with advanced tech
(2025-2035)

No “magic bullet”

E. Greitzer et al. 2010, NASA CR 2010-216794
A. Uranga et al. 2014, AIAA 2014-0906 NASA-MIT Cooperative Agreement NNX08AW63A
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System Impact of BLI

BLI benefits
I

Aerodynamic (direct) benefits
I Reduced jet and wake dissipation
I Reduced nacelle wetted area

I
System-level (secondary) benefits

I Reduced engine weight
I Reduced nacelle weight
I Reduced vertical tail size
I Compounding from reduced overall weight

“Morphing” sequence: B737-800 7! D8

I Features of D8 introduced one at a time

I Sequence of conceptual designs, optimized at each step (TASOPT)
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E. Greitzer et al. 2010, NASA CR 2010-216794

M. Drela 2011, AIAA 2011-3970



Morphing Sequence: B737-800 7! D8.2 7! D8.6
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Phase 3: Trade-O↵s Summary
2015-2017

Metric: Payload-Range Fuel Consumption =
Fuel Energy Consumed

Payload Weight⇥Range

I
D8 configuration benefit (20± 3)%
relative to tube-and-wing at same cruise speed and technology

I
N+3 technology benefit (45± 2)% relative to 1990s tech

I Tech advances benefit tube-and-wing more:
D8 has lower structural/total weight and higher payload/total weight

I
Slowing down from Mach 0.78 to 0.72 (5± 1.5)%

I Tube-and-wing benefits more from lower speed
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Phase 2: Airframe-Engine Integration
2010-2015

Quantification of D8 BLI benefit (experimental/computational)

I Direct back-to-back comparison of BLI vs non-BLI

I Wind tunnel tests of 1:11 scale (4m span) powered models
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Non-BLI
(Podded)

BLI
(Integrated)

NASA-MIT Cooperative Agreement NNX11AB35A



BLI Benefit

BLI benefit (aerodynamic)

Savings in power required for given net stream-wise force

with BLI engines relative to non-BLI engines

Power metric

Mechanical flow power transmitted to the flow by the propulsors

PK =

I
(po � po1)V · n̂ dS (incompressible)

BLI benefit ⌘ PK
non-BLI

� PK
BLI

PK
non-BLI

����
at given FX
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Obtaining P

K

Method 1: Integration of the flow on propulsor stream-tube

PK =

Z

exit

(po � po1)V · n̂ dS �
Z

inlet

(po � po1)V · n̂ dS

exitinlet inlet exit

Method 2: Conversion of electrical power provided to the propulsor motors

PK|{z}
mechanical

flow power

= ⌘f|{z}
fan

e�ciency

PK/PS

⇥ ⌘m|{z}
motor

e�ciency

PS/PE

⇥ PE|{z}
electrical

power
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Phase 2: Demonstrated Aerodynamic BLI Benefit
2010-2015
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BLI Benefit Sources

1 Lower propulsor jet dissipation and higher propulsive e�ciency:
more useful power put into the flow

2 Lower surface dissipation (smaller nacelle size and surface velocities)

3 Lower wake dissipation (partial elimination of viscous wake)

4 Lower weight due to smaller nacelles and smaller engines,
which in turn enables smaller wings, and thus even less weight

1 + 2 + 3 = aerodynamic benefit: less flight power required
for a given airframe operating at the same lift coe�cient

4 = system-level benefit after aircraft re-optimizations
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Power Balance Method

Consider mechanical energy sources and sinks:

[ Net Force ] = [ Dissipation ] � [ Power In ]

FX|{z}
“drag – thrust”

V1 = ( �
surf

+ �
wake

+ �
vortex

+ �
jet

) � ( PK|{z}
mechanical

flow power

+ ⇢⇢PV|{z}
p dV
power

)

PK

�wake

�wake �vortex

�vortex�surf

�surf

PK

�jet

�jet

Non-BLI Configuration

BLI Configuration
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Airframe Dissipation (1/2)

I Conventional drag decomposition:

D

0
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surf
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wake| {z }

D0
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(profile)
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vortex| {z }
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Airframe Dissipation (2/2)

I Wake dissipation:

�0
wake

= f

wake

(�0
surf

+ �0
wake

) = f

wake

D

0
p V1

�
wake

= (1�f

BLI

) �0
wake

= (1�f

BLI

) f
wake

D

0
p V1

where f

BLI

⌘ boundary layer ingestion fraction

= fraction of total airframe viscous kinetic energy defect
ingested by propulsors

I Vortex dissipation: �
vortex

= �0
vortex

= D

0
i V1

assuming comparison is made with same airframe at fixed CL
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Jet Dissipation

I Jet dissipation (with or without BLI):
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Mechanical Flow Power
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Parametric Expressions

Parametric expression for power required and stream-wise force

in terms of reference non-BLI configuration and propulsor operation
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Major Design Parameters for BLI Aircraft

(i) Ingested dissipation f

BLI

C

0
Dp

(ii) How “well-designed” the BLI engine installation is ) ��
surf

(iii) Propulsor operating points for each of the configurations
) respective propulsor jet velocities or mass flows
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Data Mining: Application to D8 Wind Tunnel Tests

Use expressions for CPK
and CX to fit experimental data (CL = C

0
L = 0.64)
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Propulsive E�ciency ⌘p ⌘ PK � �
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Variable Nozzle Area: Di↵erent Propulsor Designs
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Bases for Comparison
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High-E�ciency, High-OPR, Small Cores (N+3 Phase 2, P&W)

Pratt & Whitney – Lord et al., AIAA 2015-0071 : reverse core engine arch.

SAE INTERNATIONAL 

“Engine Architecture for High Efficiency at Small Core Size” 
Lord et al., AIAA 2015-0071 -  Pratt & Whitney 

42 
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D8 Transonic Design (N+3 Phase 3, U.Michigan)

Transonic wing and engine integration MDO for Mach = 0.72, 0.78 :
aero-structural optimization with loosely coupled engine model
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Airframe-Propulsion Integration Challenges

Integration lines strongly dependent on optimization’s objective function

I Hard to identify MDO objective: need fully coupled engine model

I High sensitivity of fan face condition to di↵user shape
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Airframe-Propulsion Integration Challenges
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