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Outline

* Environmental tradeoffs and interdependencies

* Multidisciplinary design optimization and
multifidelity modeling

 Examples:
 Integrating design and operations
« Advanced technologies for environmentally-sensitive
aircraft design
* Integrated decision-making: Aviation Environmental
Portfolio Management Tool



Environmentally-Sensitive Aircraft Design

* Future aircraft must satisfy an increasingly diverse set of
design requirements, many driven by stringent
environmental constraints

* Requirements necessitate the use of advanced
technologies, new operational strategies, and novel
configurations

 Traditional conceptual design models rely heavily on empiricism and
past experience

* Research Objectives

 Evaluate trade-offs between cost
and environmental impacts during

\ e
aircraft conceptual design using \
multidisciplinary optimization 7

« Develop multifidelity optimization > “‘;, \c

framework that can accommodate NR%
current and new designs Ry

* Investigate new design concepts




System Interdependencies are Key
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An integrated approach to design and
decision-making is essential.



Multidisciplinary Design Optimization (MDO)

« Multidisciplinary approach
to design

« Numerical optimization
provides a systematic way
to explore the design space

* Problem formulation is not
obvious and requires

engineering judgment Source: Kroo (Stanford),
http://adg.stanford.edu

* Challenges:
* Incorporation of environmental, financial, operational effects
 Incorporation of new technologies, unconventional aircraft concepts
» Use of high-fidelity tools in early design at the system level
« Accounting for uncertainty and variability



MDOQO: Aircraft Conceptual Design

« Traditional multidisciplinary
conceptual design tool must be

supplemented with:
« Environmental models &

« Operational design space
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* Models of new technologies

» Higher-fidelity (physics-based) 1
models i Performance

Optimizer

« Uncertainty must also be B Pass
Ifi egacy Codes
quantified and accounted for reoney Gos
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in the decision-making process. Program for Aircraft Synthesis

and Sizing (PASS), I. Kroo,
N. Antoine, Stanford
University.



Example: Integrating Technology and Operations

= Airport ——ee 7
':“--Pel:imeter '..-""5‘
/ ) ; ooooooooooo / (@) T;)
o ®ag 2000 m from m % >
- 3357 & 4164 m from

touchdown '
breaks-off point

* Models that represent operations in existing design tools
are not suitable for detailed assessment of environmental

performance

» Existing detailed operational assessment models are not
suitable for a vehicle design framework

« Must account for uncertainty in operations



LTO Analysis Requires Detailed Low-Speed
Aerodynamics Model
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Design Space, A. March (MIT).




Environmental Assessment Requires
Parameterization of Aircraft Operations

Sideline
} —— 1’:7'Eft - Flyover
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Takeoff noise certification points
« QOperational design variables:
10,000 ft
- flap setting 5]

T Allowable displacement of the
end-of-segment points

- throttle setting
- true airspeed
- end-of-procedure altitude

[3]

* Objective functions:
- time to climb
- fuel burn

- noise
Parameterization of departure trajectory for optimization
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Optimization Results: Tradeoffs Among

Environmental Performance Metrics
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Example: Advanced Technologies for
Environmentally-Sensitive Aircraft Design

« Tighter coupling between aerodynamics, structures, and
control early in the design process can yield a concept with
dramatically improved fuel efficiency and thus dramatic
reductions in CO, emissions.

« EXxpected design characteristics:

* Very high bypass ratio engines

« Low wing sweep for extended laminar flow. Restricts section
thickness which places more critical demands on wing structure.

» Slatless wing for reduced noise and simpler compatibility with
laminar flow. Leads to reduced wing loading and higher gust loads.

* High wing span for reduced lift-dependent drag.

 Gust load alleviation via active control of
wing trailing-edge devices.



Conceptual Design of Environmentally-Sensitive
Aircraft Requires New MDO Approaches

Gust field

operating point 1

* More detailed controls models than e
usual in conceptual design

structural dynamics, and controls

« For some disciplines, physics-based
models of the desired fidelity are
too expensive to be used within the
optimization process

* Close integration of aerodynamics, |
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* Proposed approach: multifidelity
optimization with a hierarchy
of models
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Conceptual Design: Multifidelity Models

minimize  f(u)
subject to c(u) <0

« Reduced complexity of f(¢) and c(¢)

« Simplified physics
 Model reduction

« Other surrogate models
(data fit, multigrid, etc.)

* Reduced complexity of u
« Different design descriptions

« Decreased resolution of
design representation

minimize (i)
subject to ¢(u) <0
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Conceptual Design: Multidisciplinary Design
Optimization with Multifidelity Models
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Integrated Decision-Making: Aviation A
Environmental Portfolio Management Tool pCfm;fN —R
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Aviation Environmental Portfolio Management Tool (APMT)

AP MT Ap proaCh Aviation Environmental Design Tool (AEDT)

Environmental Design Space (EDS)

Policy and Scenarios
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APMT: Representation of Uncertainty and Preferences

Use of “Tornado” charts to communicate
uncertainty sources and importance of policy

maker choices Nominal case
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APMT: Expected Outcomes and Practical Applications

« Expected outcomes

« Deliver APMT component of an integrated policy-
analysis framework to support ICAO/CAEP and JPDO
decision-making

 Aviation Environmental Portfolio Management Tool (APMT)
 Aviation Environmental Design Tool (AEDT)
« Environmental Design Space (EDS)

* Practical applications

« Support ICAO/CAEP decision-making
(goal = CAEP/8, 2010)

« Support JPDO/NGATS decision-making
« |dentify high leverage uncertainties and research needs



Summary

* Integrated approach to decision-making is key:
we cannot focus on just a single environmental metric

« Significant opportunities exist for reducing environmental
impact of future aircraft
* Requires a highly-integrated, multidisciplinary approach to design

« Uncertainty must be quantified and accounted for
In the decision-making process
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