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Outline

• Environmental tradeoffs and interdependencies

• Multidisciplinary design optimization and
multifidelity modeling

• Examples:
• Integrating design and operations
• Advanced technologies for environmentally-sensitive

aircraft design
• Integrated decision-making: Aviation Environmental

Portfolio Management Tool



Environmentally-Sensitive Aircraft Design

• Future aircraft must satisfy an increasingly diverse set of
design requirements, many driven by stringent
environmental constraints

• Requirements necessitate the use of advanced
technologies, new operational strategies, and novel
configurations
• Traditional conceptual design models rely heavily on empiricism and

past experience

• Research Objectives
• Evaluate trade-offs between cost

and environmental impacts during
aircraft conceptual design using
multidisciplinary optimization

• Develop multifidelity optimization
framework that can accommodate
current and new designs

• Investigate new design concepts



System Interdependencies are Key
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Multidisciplinary Design Optimization (MDO)

• Multidisciplinary approach
to design

• Numerical optimization
provides a systematic way
to explore the design space

• Problem formulation is not
obvious and requires
engineering judgment

• Challenges:
• Incorporation of environmental, financial, operational effects
• Incorporation of new technologies, unconventional aircraft concepts
• Use of high-fidelity tools in early design at the system level
• Accounting for uncertainty and variability

Source: Kroo (Stanford),
http://adg.stanford.edu



MDO: Aircraft Conceptual Design

• Traditional multidisciplinary
conceptual design tool must be
supplemented with:
• Environmental models

• Operational design space

• Models of new technologies

• Higher-fidelity (physics-based)
models

• Uncertainty must also be
quantified and accounted for
in the decision-making process. Program for Aircraft Synthesis

and Sizing (PASS), I. Kroo,
N. Antoine, Stanford
University.



Example: Integrating Technology and Operations

• Models that represent operations in existing design tools
are not suitable for detailed assessment of environmental
performance

• Existing detailed operational assessment models are not
suitable for a vehicle design framework

• Must account for uncertainty in operations
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LTO Analysis Requires Detailed Low-Speed
Aerodynamics Model

Low-speed aero model for the Environmental
Design Space, A. March (MIT).



Environmental Assessment Requires
Parameterization of Aircraft Operations

• Operational design variables:
- flap setting
- throttle setting
- true airspeed
- end-of-procedure altitude

• Objective functions:
- time to climb
- fuel burn
- noise

Parameterization of departure trajectory for optimization

Takeoff noise certification points



Optimization Results: Tradeoffs Among
Environmental Performance Metrics
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Example: Advanced Technologies for
Environmentally-Sensitive Aircraft Design
• Tighter coupling between aerodynamics, structures, and

control early in the design process can yield a concept with
dramatically improved fuel efficiency and thus dramatic
reductions in CO2 emissions.

• Expected design characteristics:
• Very high bypass ratio engines
• Low wing sweep for extended laminar flow. Restricts section

thickness which places more critical demands on wing structure.
• Slatless wing for reduced noise and simpler compatibility with

laminar flow. Leads to reduced wing loading and higher gust loads.
• High wing span for reduced lift-dependent drag.
• Gust load alleviation via active control of

wing trailing-edge devices.



Conceptual Design of Environmentally-Sensitive
Aircraft Requires New MDO Approaches

• More detailed controls models than
usual in conceptual design

• Close integration of aerodynamics,
structural dynamics, and controls

• For some disciplines, physics-based
models of the desired fidelity are
too expensive to be used within the
optimization process

• Proposed approach: multifidelity
optimization with a hierarchy
of models

Gust encounter studies
K. Fidkowski (MIT)



Conceptual Design: Multifidelity Models

• Reduced complexity of f(¢) and c(¢)
• Simplified physics
• Model reduction
• Other surrogate models

(data fit, multigrid, etc.)

• Reduced complexity of u
• Different design descriptions
• Decreased resolution of

design representation

J.J. Alonso, I.
Kroo, Stanford
University

Medium-
fidelity:
ASWING
(lifting line)

High-fidelity:
Cart3d
(Euler CFD)

Low-fidelity: analytical
(Wagner/Küssner)



Conceptual Design: Multidisciplinary Design
Optimization with Multifidelity Models

Collaborative work with
K. Fidkowski (MIT), I. Kroo
(Stanford), E. Cramer (Boeing),
F. Engelsen (Boeing)



Integrated Decision-Making: Aviation
Environmental Portfolio Management Tool

APMT

Policy scenarios
•Certification stringency
•Market-based measures
•Land-use controls
•Sound insulation

Market scenarios
•Demand
•Fuel prices
•Fleet

Environmental scenarios
•CO2 growth

Technology and
operational advances
•CNS/ATM, NGATS
•Long term technology
forecasts

Cost-effectiveness
•$/kg NOx reduced
•$/# people removed from
65dB DNL
•$/kg PM reduced
•$/kg CO2 reduced

Benefit-cost
•Health and welfare
impacts
•Change in societal
welfare ($)

Distributional
analyses
•Who benefits, who pays
•Consumers
•Airports
•Airlines
•Manufacturers
•People impacted by
noise and pollution
•Special groups
•Geographical regions

Global, Regional, Airport-local

in
pu

ts
outputs

(reports available at www.partner.aero) An FAA/NASA/TC-sponsored Center of Excellence
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APMT: Representation of Uncertainty and Preferences

Use of “Tornado” charts to communicate
uncertainty sources and importance of policy
maker choices

Preliminary Results Only--Do not cite
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APMT: Expected Outcomes and Practical Applications

• Expected outcomes
• Deliver APMT component of an integrated policy-

analysis framework to support ICAO/CAEP and JPDO
decision-making

• Aviation Environmental Portfolio Management Tool (APMT)
• Aviation Environmental Design Tool (AEDT)
• Environmental Design Space (EDS)

• Practical applications
• Support ICAO/CAEP  decision-making

(goal = CAEP/8, 2010)
• Support JPDO/NGATS decision-making
• Identify high leverage uncertainties and research needs



Summary

• Integrated approach to decision-making is key:
we cannot focus on just a single environmental metric

• Significant opportunities exist for reducing environmental
impact of future aircraft
• Requires a highly-integrated, multidisciplinary approach to design

• Uncertainty must be quantified and accounted for
in the decision-making process


