

NASA Sponsored Activities in Laminar Flow Technologies for Advanced Transport Aircraft

Fayette Collier, Ph.D., M.B.A. Project Manager Environmentally Responsible Aviation (ERA) Project, NASA

www.nasa.gov

2nd UTIAS-MITAS International Workshop on Aviation and Climate Change MAY 27-28, 2010 Toronto, Canada

- NASA System Metrics and Technology Evaluations
- Laminar Flow Technology Background and Status
- NASA Activities to Advance Laminar Flow Technology
- Concluding Remarks

NASA Subsonic Transport System Level Metrics

.... technology for dramatically improving noise, emissions, & performance

Over the next 5 years:

- Explore and mature alternate unconventional aircraft designs and technologies that have potential to simultaneously meet community noise, fuel burn, and NOX emission midterm goals as described in the National Aeronautics R & D Plan
- Determine potential impact of these aircraft designs and technologies if successfully implemented into the Air Transportation System
- Determine potential impact of these technologies on advanced "tube and wing" designs

ERA focused subset of Metrics

CORNERS OF THE TRADE SPACE	N+1 = 2015*** Technology Benefits Relative To a Single Aisle Reference Configuration	N+2 = 2020*** Technology Benefits Relative To a Large Twin Aisle Reference Configuration	N+3 = 2025*** Technology Benefits
Noise (cum below Stage 4)	-32 dB	-42 dB	-71 dB
LTO NO _x Emissions (below CAEP 6)	-60%	-75%	better than -75%
Performance: Aircraft Fuel Burn	-33%	-50%**	better than -70%
Performance: Field Length	-33%	-50%	exploit metro-plex* concepts

***Technology Readiness Level for key technologies = 4-6. ERA will undertake a time phased approach, TRL 6 by 2015 for "long-pole" technologies

** RECENTLY UPDATED. Additional gains may be possible through operational improvements

* Concepts that enable optimal use of runways at multiple airports within the metropolitan area

Advanced Configuration 1 N+2 Advanced "tube-and-wing" 2025 Timeframe

Advanced Configuration 2A N+2 Advanced HWB 2025 Timeframe

Advanced Configuration 2B N+2 HWB300 2025+ Timeframe

SOFC/GT Hybrid APU

Potential Reduction In Fuel Consumption 2025 EIS (TRL = 6 in 2020)

Technology Benefits Relative to Large Twin Aisle (Reference: 777-200LR "like" Vehicle

Reference Fuel Burn = 277,800 lbs

Fuel Burn Reduction via Laminar Flow Control

- Objective Enable practical laminar flow for transport aircraft
 - LFC demonstrated in several flight experiments
 - Subsonic boundary layer transition mechanisms are sufficiently well understood for design
 - Swept-Wing laminar flow is design tradeoff between TS and CF modes

Status of Practical Laminar Flow Control

- Laminar flow has yet to be exploited on transonic transport aircraft
 - Laminar flow technology at TRL of 5-6. What needs to be done?
- Achieving LFC is a complex design challenge
 - Configuration trades between sweep, wing thickness, cruise Mach number, S&C (SRL ??)
 - System integration trades high-lift performance, flight weight systems, structural stiffness (IRL ??)
 - Manufacturing of structures, joints, surface quality, etc. (IRL ??)
- Outstanding questions
 - Operational readiness
 - robustness to contamination, repair of surface damage, loss of LF due to clouds/ice
 - Examples: JetStar, A320 HLFC vertical tail
 - Pre-flight assessment ability to ground test/ assess across full-flight envelop

757 HLFC Experiments

Laminar Flow Approach is Determined by Mission

- Approach dependent on system requirements and trades
- System design decisions/trades
 - Mach/Sweep, Rn, Cp distribution, high-lift system
 - Aircraft components, and laminar extent of each

Laminar Flow Technology Maturation by NASA

- Develop and demonstrate usable and robust aero design tools for NLF, HLFC
 - Link transition prediction to high-fidelity aero design tools
- Explore the limits of CF control through Discrete Roughness Elements (DRE)
 - Practical Mach, Re demonstration at relevant C_L
 - Potential control to relax surface quality requirements

-NASA NRA to develop N+2 concepts to PDR

- Integration of NLF, HLFC, and/or DRE into flight weight systems
- Understand system trades

Assess and develop high Reynolds number ground test capability

Aero Tools for LFC Design

Some Aerodynamic Trades in Transonic NLF Design

Challenges:

• Longer extent of favorable pressure gradient can increase shock Mach number (M_1) and wave drag

Thinning an airfoil can reduce M₁, but thinness is

limited by need for favorable gradient, especially if NL

 $\Delta c_{dw} = .04/(t/c)^{1.5*}(M_1-1)^4$

Thinning airfoil to t/c=.09 may remove this wave drag penalty

For t/c=0.10, increasing M₁

is also desired on lower surface

- Small leading edge radius for NLF and/or thin airfoil can adversely impact low-speed, high-lift characteristics
- Design must be multipoint in the traditional sense as well as minimizing impact if NLF is lost

Note: the above equations were empirically derived (by Dick Campbell) and may not be generally applicable.

- Modal Amplitude Tracking and Transition Computation
- Computes transition location based on empirical correlations
 - transition studies using 3 airfoils run in MSES and LASTRAC
 - TS: Re = 0.25 30 million
 - CF: Re = 10 30 million, sweep = 10 30 degrees
- $x_{tr} = f(Re,dCp/dx,x)$, with sweep included for CF
- No boundary layer information required, provides n-factor envelope

"Knowledge-Based" NLF Airfoil Design with CDISC NLFCP Constraint

- New knowledge-based approach for design to a specified TS n-factor distribution
- Laminar "drag bucket" characteristics can be related to the n-factor family exponent (NFE)
- New approach compatible with other CDISC design method flow and geometry constraints for practical 3-D design
- Independent analysis by Streit at DLR using Schrauf's LILO method confirmed TS results and indicated robust CF performance

New NLF Target Pressure Generator

- New tool creates a target pressure distribution for CDISC design for a specified TS or CF n-factor distribution
- Utilizes MATTC transition prediction method for rapid estimation of n-factors
- Options available for independent or combined TS/CF targets, with or without lift constraint

Delay of Crossflow Transition with DRE

- The stationary crossflow vortex modifies the mean boundary layer flow
- Discrete Roughness Elements (DRE) used to control growth of spanwise periodic CF instability
 - Introduce weakly growing wavelength at half most amplified wavelength through stability analysis
 - modified mean flow is stable to all greater wavelengths
 - Restricts TS waves due to more stable 3D wave
- Design philosophy
 - t/c and C_L are design points
 - Design pressure minimum as far aft as possible (potential wave drag penalty)
 - Subcritical to TS instability
 - Restrict leading edge radius to $R_{\theta}^{<100}$ for subcritical attachment line
 - Iterate *Cp* distribution with stability calculations for crossflow control
 - Euler and Navier-Stokes for Cp and BL
 - Orr-Sommerfeld for stability
 - Parabolized Navier-Stokes for final assessment

Flight Demonstration of DRE

- To date, DRE technology demonstrated at low Re only (~ 8M)
- NASA/TAMU/AFRL to fly DRE on NASA DFRC G-III Wing Glove
 - Leading edge sweep 31.5°, Mach number 0.75
 - Span approximately 2 meters
- Primary goal: Demonstrate DRE increases extent of laminar flow by 50%
 - Design for NLF to $15 20M \text{ Re}_c$ with transition at x/c = 60%
 - Use DRE to delay transition at 22 30M Re_c to x/c = 60%
- Secondary goal: Demonstrate ability of DRE to control CF with relaxed surface quality on leading edge by textured paint finishes
- DRE geometry: Appliqué with DRE with diameter of 1.5 mm, height of 6-12 microns, wavelength of 4 mm along x/c = 1%

Discrete Roughness Elements

Laminar Flow Glove

Ground Facility Capability for Laminar Flow Testing

a line

- Boeing/NASA test in NASA National Transonic Facility (NTF) at High Re
- Wing design for laminar flow with mix of TS and CF transition at Re between 11 – 22 million at Mach = 0.8, 25° leading edge sweep
- Designed with non-linear full potential equations with coupled integral boundary layer code
- Instability growth and transition prediction calculations by compressible linear stability code
- Laminar flow lost at higher Re numbers
 - Turbulent wedges emanating from leading edge of wing
 - Suspect attachment line contamination from particles, frost, and/or oil

Supporting Technology for Practical LFC

– Low-Surface Energy Coating/Finishes

- Self-cleaning surfaces, insect/ice protection
- Demonstrate coatings for insect and ice protection on NASA G-III
- Develop abhesives with very low surface energy
- Surface engineering for controlled roughness to enhance hydrophobicity
- Lightweight Structural Concepts Suitable for LFC Applications
 - Rethink structural design to meet NASA System Metrics – multi-functional teams and enablers
 - Tailored load paths, stitching, free-form fab, integral curvilinear stiffeners, materials
 - Aeroelastically tailored laminar flow wing structures team

Stitched Composites

Integrated Curvilinear Stiffeners

Internal structure of bird bones

HLFC - Insect Adhesion

Component Integration

Summary of Practical Barriers to LFC

- Most system studies require integration of laminar flow to meet fuel burn goals
- Surface tolerances, fit, and finish
 - Front spar joint may trip boundary-layer limiting laminar flow to 15% to 30% of chord
 - CF sensitive to surface finish in range of few microns, TS sensitive to surface waviness
 - Attachment line contamination and CF sensitive possible due to insects, dents/ damage, or other excrescences
 - Leading edge high lift device integration (joints, discontinuities)

Configuration aero design

- Laminar flow inboard of wing mounted nacelle difficult due to interference and leading edge radius
- Conflicting design requirements. Example: CF (minimize –dp/dx) and TS (maximize dp/dx)
- Effect of loss of laminar flow en route stability, fuel burn
- Account for aeroelastic effects

Maintenance and operations

- Maintenance access panels on laminar flow surfaces
- Maintenance of suction systems
- Surface cleaning

Technology being researched	Description of Research	Test bed or facility	Technology Readiness in 2012
Drag Reduction			
Discrete Roughness Elements	Flight test at high RN.	NASA Gulfstream- III	5-6
Natural Laminar Flow	High RN wind tunnel testing. Qualify wind tunnel for laminar flow design/testing. T/W, HWB models	National Transonic Facility	5
Decision Point Hybrid Laminar Flow	Define and address barriers to certification using a multi- disciplinary approach	TBD – Future flight test bed	Currently 3-5
Decision Point AFC for Rudders	Practical integration of AFC for increased rudder performance	TBD - Future flight test bed	Currently 3

Technology being researched	Description of Research	Test bed or facility	Technology Readiness in 2012
Resin Infused Stitched Composites			
Pultruded rod stitched efficient unitized structure	Flat panel testing	NASA COLTS	4
	Curved panel test	FAA FASTER	4
	Multi-bay pressurized test of a center-body section – HWB Focus	NASA COLTS	5
Decision point	Full PRSEUS Wing with laminar flow	TBD – Flight test bed	Beyond 2012 Target 6-7

Technology being researched	Description of Research	Test bed or facility	Technology Readiness in 2012
Propulsion System			
Open Rotor	System studies. Tube and wing and HWB	N/A	N/A
	(Re)baseline performance and acoustics (uninstalled/ installed)	NASA 9 x 15 NASA 8 x 6	5
	Noise shielding optimization testing (tube and wing and HWB)/propulsion aero- acoustics testing	Boeing Low Speed Acoustic Facility/ NASA 14x22	5
			26

Technology being researched	Description of Research	Test bed or facility	Technology Readiness in 2012
Propulsion System			
UHB	System studies. Tube and wing and HWB	N/A	N/A
	UHB performance/ acoustics	NASA 9 x 15	5
	UHB (BPR = 18) Integration Testing	Ames 11-ft Transonic Test	4
	Noise shielding optimization test/PAA	Boeing LSAF/14x22	5
Embedded Engine	Fan tolerant design and test	NASA 9x15	4
Decision Point	Open rotor/UHB/ embedded integration testing	TBD – Flight test bed	Beyond 2012 Target 6-7