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Aggressive Technology Goals Have Been Defined

Vehicle Level Metrics for Fuel Burn Reduction

∆ Fuel Burn                  Time Frame

NASA  N+2
ACARE  Vision 2020

NASA  N+3
Flightpath 2050

-50%              15 yrs

-60 to -75%     20-40 yrs
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Short/Medium Range
In Service

BPR 5
Fuel Burn Reference

2013-16
BPR ~12

-15%

Longer Term
BPR 15~18
-20~30%

How Much ∆ Fuel Burn from the Propulsion System?

Propulsion Trend to Big Fans/ Small Cores
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ICAO/CAEP Fuel Burn Workshop –
London, England, 25-26 March 2009

Fan Drive Gear System
Planetary- 5 Planets
Compact High Efficiency Power Transmission

Low-PR Fan
Low Tip Speed

High-Speed Low Spool
Compact  3-stage  LPC, LPT

New High-OPR core
Low-Emissions Combustor

GTF Engine Architecture – 2013 Configuration
BPR ~ 12
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Fuel Efficiency Drives Thermodynamic Cycle
Thermal efficiency- production of power from fuel heat release → higher OPR
Propulsive efficiency- conversion of power to thrust → lower FPR
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Thermal Efficiency Trend with Overall Pressure Ratio

N+3
Challenges:

▪High-Temp Materials
▪Component η
at Small Core Size
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5.7 core 3.0 core

“Core Size” Design Issue for High-OPR Engines
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Current Engines  “N”
Centrifugal Rear Stage

Current Engines  “N”
All Axial HPC

Material Limit

Architecture Limit

Material Limit
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OPR-CS  Design Space Chart
Technology trend to higher OPR/ smaller CS challenges material capability and architecture
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FPR

Propulsive Efficiency Trend with Fan Pressure Ratio

Fan
ηP

internal losses 
in fan stream

Ideal fan ηP is only a function of FPR
and flight Mach

Flight Mach = 0.80
fan

0Nfan
Pfan SHP

VF
=η

GTF Engine design space
FPR ~ 1.2 – 1.5
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Current 5:1 
BPR

Advanced 18:1 
BPR

Current 5:1 BPR Future 18:1 BPR

Installation Challenge for Low-FPR/ High-BPR Engines

Relative
Fan Diameter
(const thrust)

FPR
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Reference
V2500

1988 EIS

Adv GTFTM

Engine
+30% Eff
EIS 2020-2025

PW1000G GTFTM Engine
+16% Eff
EIS 2013-2015

Unconventional
Installations

2015 2020 2025 2030

Gen 3 GTFTM Engine
+45% Eff
EIS 2030-2035

Unconventional Installations Considered for N+2, N+3
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N+2  Boeing BWB Installation UHB Ducted Engine

BPR ~ 18 Engine
∆ Fuel Burn for the Propulsion System
estimated at -18% relative to PW4090/777

Significant reduction in jet noise
for the low-FPR engine

Combine with airframe shielding of
fan noise and airframe noise reduction
to meet N+2 noise goals

UHB Engine vs Legacy (PW4090) Noise
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N+3  D8 (Double-Bubble) Configuration
180 Passengers, 3000 nmi Range

From: M Drela, MIT

• Double bubble lifting fuselage

• Engines flush-mounted 
above aft fuselage 

• Engine noise shielding and 
extended rearward liners

• Reduced cruise Mach 
number with unswept wings,

• Optimized cruise altitude 
45kft (13.7 km)
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• Entire upper fuselage BL ingested by propulsor bypass 
stream

• Exploits aft fuselage static pressure field to condition flow
– Fuselage's potential flow has local M = 0.6 at fan face
– No additional required diffusion into fan
– No generation of streamwise vorticity and secondary flow

Contoured aft fuselage
Engines ingesting full upper surface 
boundary layer

Fuselage Boundary Layer Ingestion
for Increased Propulsive Efficiency

From: M Drela, MIT©  2012  United Technologies Corporation



Reduced Emissions/ Combustor Technology

• For aviation gas turbines, key issues are:
– Landing and Take-Off (LTO) NOx => impacts on local airport 

operations
– Cruise NOx and particulate matter (PM) => man-made pollutants 

at altitude
• P&W combustor technology

– World-class TALON rich-quench-lean (RQL) technology
• Significant reductions in LTO NOx (over 50% reduction compared to 

CAEP 6 for the TALON X in a GTF)
• Similar reductions in cruise NOx
• Swirler technology to reduce smoke and PM

– Continued exploration of novel combustor concepts
• Seeking very low NOx and PM
• Robust configurations
• Working with NASA, AFRL, Navy

©  2012  United Technologies Corporation



Propulsion Technology Direction  - Summary

▪ -15% fuel burn by mid-decade enabled by new technology engines
(PW1524G, PW1133G) on single-aisle aircraft

▪ Longer term goal -20 to -30%   (2025+)

▪ Future propulsion design challenges involve small cores and big fans
-alternative architectures at engine and vehicle level may be required
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