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Twofold Pressure to Improve Performance
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Aggressive Technology Goals Have Been Defined

Vehicle Level Metrics for Fuel Burn Reduction

A Fuel Burn Time Frame

NASA N+2
ACARE Vision 2020 -50% 15 yrs

EnAg:;Sr]?paT; 2050 06010 -75%  20-40 yrs
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How Much A Fuel Burn from the Propulsion System?

Short/Medium Range

In Service 2013-16 L onger Term
BPR 5 BPR ~12 BPR 15~18
Fuel Burn Reference -15% -20~30%

v

Propulsion Trend to Big Fans/ Small Cores
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GTF Engine Architecture — 2013 Configuration
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Fuel Efficiency Drives Thermodynamic Cycle

Thermal efficiency- production of power from fuel heat release — higher OPR
Propulsive efficiency- conversion of power to thrust — lower FPR
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Thermal Efficiency Trend with Overall Pressure Ratio
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“Core Size” Design Issue for High-OPR Engines
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OPR-CS Design Space Chart

Technology trend to higher OPR/ smaller CS challenges material capability and architecture
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Propulsive Efficiency Trend with Fan Pressure Ratio
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Installation Challenge for Low-FPR/ High-BPR Engines
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Unconventional Installations Considered for N+2, N+3

Reference Adv GTF™
V2500 Engine
1988 EIS +30% Eff

EIS 2020-2025

Gen 3 GTF™ Engine
+45% Eff
EIS 2030-2035

2015 2020
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N+2 Boeing BWB Installation UHB Ducted Engine

UHB Engine vs Legacy (PW4090) Noise

Sideline Condition

']‘ Legacy
10 EPNdB

|

BWB

Jet Core FanInlet Fan Aft

Significant reduction in jet noise
for the low-FPR engine

Combine with airframe shielding of
fan noise and airframe noise reduction
to meet N+2 noise goals

BPR ~ 18 Engine
A Fuel Burn for the Propulsion System
estimated at -18% relative to PW4090/777
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N+3 D8 (Double-Bubble) Configuration
180 Passengers, 3000 nmi Range

« Double bubble lifting fuselage

« Engines flush-mounted
above aft fuselage

 Engine noise shielding and
extended rearward liners

—_

 Reduced cruise Mach
number with unswept wings,

| o)« Optimized cruise altitude
E; | 45kft (13.7 km)

From: M Drela, MIT
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Fuselage Boundary Layer Ingestion
for Increased Propulsive Efficiency

Engines ingesting full upper surface
boundary layer Contoured aft fuselage
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» Entire upper fuselage BL ingested by propulsor bypass
stream

« EXxploits aft fuselage static pressure field to condition flow
— Fuselage's potential flow has local M = 0.6 at fan face
— No additional required diffusion into fan
— No generation of streamwise vorticity and secondary flow
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Reduced Emissions/ Combustor Technology

« For aviation gas turbines, key issues are:
— Landing and Take-Off (LTO) NOx => impacts on local airport
operations

— Cruise NOx and particulate matter (PM) => man-made pollutants
at altitude

« P&W combustor technology

— World-class TALON rich-quench-lean (RQL) technology

« Significant reductions in LTO NOx (over 50% reduction compared to
CAEP 6 for the TALON X in a GTF)

« Similar reductions in cruise NOXx
» Swirler technology to reduce smoke and PM
— Continued exploration of novel combustor concepts
» Seeking very low NOx and PM
» Robust configurations
« Working with NASA, AFRL, Navy
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Propulsion Technology Direction - Summary

= -15% fuel burn by mid-decade enabled by new technology engines
(PW1524G, PW1133G) on single-aisle aircraft

= Longer term goal -20 to -30% (2025+)

= Future propulsion design challenges involve small cores and big fans
-alternative architectures at engine and vehicle level may be required
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