Optimization of Hybrid Wing-Body Aircraft with Stability and Control Considerations Thomas A. Reist Research Associate University of Toronto Institute for Aerospace Studies 6th International Workshop on Aviation and Climate Change University of Toronto Institute for Aerospace Studies May 16-18th, 2018 #### Unconventional Aircraft Concepts The tube-and-wing design has served us well for over 60 years... ... But is a step change in configuration design required? #### The Hybrid Wing-Body - One promising unconventional concept is the hybrid wing-body (HWB) - The HWB has primarily been investigated for large aircraft, where its intrinsic design features are beneficial - The lack of an empennage makes stability and control (S&C) challenging - S&C becomes tightly coupled with configuration design #### Objectives - Can an HWB satisfy longitudinal and lateral S&C requirements? - Are winglet or fin-equipped HWBs more efficient? - What is the optimal shape for small HWBs? ### Design Problem - Regional-class aircraft, similar to the E190 - Seek a design which minimizes a 50/50 combination of MTOW and cruise drag - Analysis point at the top of climb sizes engines and fuel load - Trim and longitudinal static (in)stability enforced at this point | 100 | |-----------| | | | ,000 nmi | | 22,500 lb | | | | 0.78 | | 36,000 ft | | | #### Off-Design S&C Requirements: Longitudinal - Rotation authority - 3 deg/sec attainable at a given rotation speed - Low-speed trim at extremes of CG envelope - Control surfaces - 1 centerbody elevator, 6 wing-mounted elevons - 1/3 of travel allowable to satisfy rotation constraint #### Off-Design S&C Requirements: Lateral - Controllability with one engine inoperative (OEI) - ullet Zero bank angle, static proxy for $V_{ m MC_G}$ - Cross-wind approach - Control surfaces - 2 winglet/fin-mounted rudders #### Multi-Fidelity Multidisciplinary Optimization - Fully coupled aerodynamics, structures/weights, and propulsion models for system-level sizing and optimization - Aerodynamics: - RANS solver with SA turbulence model for airframe drag - Off-design conditions analyzed in ground effect with moving ground plane - Low-fidelity estimates of excrescence, nacelle, and windmilling drag - Weight and balance: - Low-fidelity structural weight models - Propulsion sizing: - Scaling relations for high BPR engines, sized by top of climb requirements - Fuel loads - Breguet range equation and fuel factors - FFD geometry control - Gradient-based optimization ## Optimization Problem | Objective | | minimize $\frac{1}{2} \frac{\text{MTOW}}{\text{MTOW}_{\text{ref}}} + \frac{1}{2} \frac{D}{D_{\text{ref}}}$ | | |------------------|--------------|--|--| | Design variables | Geometric: | (See next slide) | | | | Cruise: | $-2.5^{\circ} \leq AoA \leq +2.5^{\circ}$ | | | | OEI: | $0.0^{\circ} \leq AoA \leq +2.0^{\circ}$ | | | | | $-30^{\circ} \leq \delta_r \leq +30^{\circ} \text{ ($\times 2$)}$ | | | | Rotation: | $0.0^{\circ} \leq AoA \leq +2.0^{\circ}$ | | | | | $-25^{\circ}/3 \leq \delta_e \leq +25^{\circ}/3$ (×7) | | | Constraints | Geometric: | Cabin shape constraint | | | | 00001 | Cabin Shape constraint | | | | 000111011101 | Wing fuel volume | | | | | , | | | | | Wing fuel volume | | | | Cruise: | Wing fuel volume Tip strike clearance | | | | | Wing fuel volume Tip strike clearance Ground clearance | | | | | Wing fuel volume Tip strike clearance Ground clearance Longitudinal trim | | ## Geometric Design Variables #### Control Surface Modelling - Results in continuous mold-line control surface - Validation with plain flap data shows good agreement for AoA and deflections considered here Axial control curves B-spline surface #### Control Surface Modelling - Results in continuous mold-line control surface - Validation with plain flap data shows good agreement for AoA and deflections considered here FFD control grid Axial control curves B-spline surface #### Optimization of Winglet and Fin-Equipped Designs - Begins from a section-optimized BWB at cruise (no S&C constraints) - Active constraints at convergence: - All trim and S&C constraints - Fuel volume and tip strike (with max dihedral) - Winglet root chord and sweep go to their lower bounds (5 ft, 30°) - AoA on ground goes to its upper bound (2°) - Wing at forward position - Minimum thickness on portions of the chord at the wing tip Optimization convergence history #### Optimized Designs | | HWB100W | HWB100F | |-------------------------|------------|------------| | MTOW [lb] | 121,100 | 119,000 | | MZFW [lb] | 94,900 | 93,300 | | OEW [lb] | 72,400 | 70,800 | | Max fuel weight [lb] | 26,200 | 25,700 | | Max payload $[lb]$ | 22,500 | 22,500 | | Cruise thrust [lb] | 3,400 | 3,400 | | SLS thrust [lb] | 15,400 | 15,000 | | Span [ft] | 158.2 | 151.2 | | Cruise drag $[lb/cnts]$ | 6,110/84.5 | 5,960/86.8 | | Cruise C_L [–] | 0.163 | 0.168 | | Cruise L/D [–] | 19.3 | 19.4 | | Cruise K_n [% MAC] | +1.6 | +0.8 | Fin-equipped HWB has small weight and aerodynamic advantage #### Lateral Control - Controls saturate - Wing design for the fin-equipped HWB is decoupled from the OEI constraint, and is driven by performance - OEI constraint drives winglet/fin size and wing sweep/span for winglet-equipped configuration #### Longitudinal Control: Rotation - Controls saturate - Centerbody elevator most effective - Strong driver of planform. Drives: - Centerbody length - Wing sweep/span #### Longitudinal Control: Low Speed Trim - Low speed (Mach 0.20) trimability checked post-optimization at fore and aft CG conditions - Redundant control problem, so minimum drag solution sought - Centerbody elevator provides sufficient pitch authority to trim - BWB100W control solution shown #### Centerbody Inefficiencies - Centerbody weight fraction is high 40% OEW - Large weight/drag penalty from aft centerbody #### Narrow Centerbody Derivatives - Wasted space aft of the cabin leads to large weight penalty - Investigate alternative cabin layouts which permit a narrower, more elongated, centerbody - ullet Past work at UTIAS has suggested there is also an L/D benefit due to reduced wetted area - Optimize as before, but with new cabin shape constraints which reflect the layouts shown below #### Comparison of Wide and Narrow Centerbody Designs | | HWB100W | HWB100W-N7 | |----------------------------------|------------|------------| | MTOW [lb] | 121,100 | 108,600 | | MZFW [lb] | 94,900 | 85,800 | | OEW [lb] | 72,400 | 63,300 | | Max fuel weight [lb] | 26,200 | 22,900 | | Max payload [lb] | 22,500 | 22,500 | | Cruise thrust [lb] | 3,400 | 2,960 | | SLS thrust $[lb]$ | 15,400 | 13,200 | | Span [ft] | 158.2 | 129.6 | | Cruise drag $[\mathrm{lb/cnts}]$ | 6,110/84.5 | 5,190/91.5 | | Cruise C_L [–] | 0.163 | 0.186 | | Cruise L/D [–] | 19.3 | 20.3 | | Cruise K_n [% MAC] | +1.6 | +0.4 | - Up to a 10% reduction in MTOW - More efficient centerbody reduces OEW by up to 9,100 lb - Up to 5% higher L/D due to reduced wetted area and increased wing loading #### Comparison of Rotation Authority - Centerbody elevator effectiveness reduced by 50% relative to the BWB100W - Optimizer does not significantly increase the centerbody length, instead opting to improve cabin packing efficiency - Trimmable at low speed, but requires all control surfaces #### Conclusions - Both winglet and fin-based control methods are capable of satisfying the S&C requirements studied here - Fin-equipped design is superior - Lower MTOW and higher cruise L/D - Fin-equipped configuration would also benefit from acoustic shielding - More elongated cabin layout offers weight and aerodynamic benefits - Longitudinal control is more challenging - Engine installation challenges for this configuration - Attains maximum aerodynamic efficiency at lower altitude - \bullet Lower span \to gate constraint would be less detrimental