

Towards Skin Friction Drag Reduction via Active Control of the Turbulent Boundary Layer

Randy Belanger, Ronald Hanson, Pieter Boom, David Zingg & Philippe Lavoie

Skin Friction Drag Reduction

- At cruise, 40%-50% of drag on airplane from skin friction
- Can be reduced by
 - delaying transition
 - control/reduce level of turbulence

Turbulent Boundary Layer Control

- Approaches based on changing mean flow have not proven energy effective
 - boundary layer suction
- More sophisticated methods rely on subtle manipulations of flow structures and/or instabilities
 - Classic example are riblets

Turbulent Boundary Layer 101

- Characteristic mean profile of velocity and streamwise turbulent velocity
- Two normalizations of interest
 - Outer variables
 - Inner variables

Friction velocity

$$u_{\tau} = \sqrt{\frac{\tau_w}{\rho}}$$

$$y^+ = \frac{y u_{\tau}}{\nu}$$

$$Re_{\tau} = \frac{\delta u_{\tau}}{\nu}$$

buffer

layer

Self-sustaining Mechanism of Turbulence

- Coherent structures in the boundary layer play an important role in the self-sustaining mechanisms in wall-bounded flows (Panton, 2001)
- New methods attempt to disrupt or stabilize this mechanism

Opposition Control of Turbulent BL

- Choi, Moin & Kim (1994) introduced concept of opposition control using DNS of channel flow
- Effective drag reduction via control of turbulence using active blowing and suction in DNS (Kim 2003 & 2011)

Spanwise Wall Oscillation

- Spanwise wall oscillations and traveling waves stabilize near wall flow
- Drag reduction of the order of 30-40% demonstrated numerically

Practical Issues

- Two key issues for implementation of these
 - physical scales at flight Reynolds numbers are very small
 - Reynolds number scaling

What is Changing?

- Energy content in boundary layer changes with Reynolds number
- Near-wall control might not work for high Re...

Increasing Importance of Large Scales

UNIVERSITY OF TORONTO

Centre for Research in Sustainable Aviation

Hutchins & Marusic, JFM (2007)

Top Down Interactions

$$Re_{\tau} = 7030$$

Presence of large scale structure in log-layer modulates small scale dynamics near the wall

Skin Friction Reduction via Log-layer

- Hairpin packets also important in log-layer
 - Might be easier to control larger scales
- Previous attempts at modifying these with physical obstacles have demonstrated persistent effects (order of $100 \, \delta$)
- So-called "Large-eddy break up" (LEBU) devices have shown net skin friction drag reduction of order 10-20% at the wall...
 - not enough to overcome drag of LEBU and effect of thickened boundary layer

Corke et al., NASA Report (1981)

Beyond Steady Forcing

- Recent efforts at manipulating vortex packets using physical obstacles - this time 3D (e.g., humps, cylinders; in isolation or array)
- Steady forcing from physical objects limiting missing time scale, lack of flexibility for changes in conditions
- Our current work aims to manipulate vortex packets in the log-layer using an array of synthetic jets
- Combined experimental and numerical techniques used to approach problem

Base Flow Conditions

leading edge

Base flow

$$U_{\infty}=10~\mathrm{m/s}$$
 $Re_{ au}=1070$ flow direction

$$\delta = 42.5 \text{ mm}$$

Forcing parameters

$$St = \frac{f\delta}{U_{\infty}}$$
 blowing frequency

$$r = \frac{U_j}{U_{\infty}}$$
 blowing ratio

$$\Delta z = 0.3\delta$$
 actuators spacing

Structure of Induced Flow

Mean flow structure induced by the jet include:

- counter rotating vortices from nozzle edge
- recirculating bubble (sometimes)

Time Dependence of Forcing

Similar structure from the mean, plus a leading high speed pocket

Effects of Forcing Frequency

Larger effect on loglayer with lower Strouhal numbers

constant r increasing St

Effects of Forcing Amplitude

 $\times 10^{-3}$

Increased penetration with higher blowing ratio

constant Stvarying r

Phase Information

- Amplitude modulation of near-wall peak due to structures imparted by synthetic jet
- Effect increases with increasing blowing ratio

Skin Friction Measurements

- Hot-films used to measure skin friction at 6 locations
- Coarse spatial measurements for fine study of forcing parameter space

Effect of Forcing on Skin Friction

- Average of four most downstream sensors (plus some caveat)
- Region of "lower" skin friction at low forcing amplitude
- What is changing in the boundary layer dynamics?

Conclusion

- Best way to control turbulent boundary layer at flight Reynolds number might be different from low Reynolds number case
- Increasing importance of log-layer structures could provide a pathway to changing the dynamics of the boundary layer and reduce skin friction
- Synthetic jets were demonstrated to be effective at imposing a new structure to log-layer turbulence
- What is the nature of the interaction between the jet flow and turbulence?
- How to optimize this interaction for drag reduction?
- Can we be a bit smarter?
 - Would some knowledge of present structures help?

Thanks for your attention! Questions?

