

LOW BOOM FLIGHT DEMONSTRATOR

Peter Iosifidis

LBFD Program Manager

Advanced Development Programs / Skunk Works

NASA STRATEGIC IMPLEMENTATION PLAN

3 Mega-Drivers

6 Strategic Research & Technology Thrusts

Safe, Efficient Growth in Global Operations

 Enable full NextGen and develop technologies to substantially reduce aircraft safety risks

Innovation in Commercial Supersonic Aircraft

Achieve a low-boom standard

Ultra-Efficient Commercial Vehicles

 Pioneer technologies for big leaps in efficiency and environmental performance

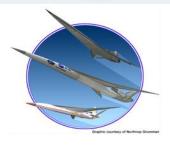
Transition to Low-Carbon Propulsion

 Characterize drop-in alternative fuels and pioneer low-carbon propulsion technology

Real-Time System-Wide Safety Assurance

 Develop an integrated prototype of a real-time safety monitoring and assurance system

Assured Autonomy for Aviation Transformation


Develop high impact aviation autonomy applications

LOW BOOM HISTORY

FAR 91.817 (1960's) -"No person may
operate a civil aircraft.
.. at a ... flight Mach
number greater than 1.
.. unless - {App. B} ...
the flight will not cause
a measurable sonic
boom overpressure to
reach the surface ..."

Quiet Supersonic Platform 2000

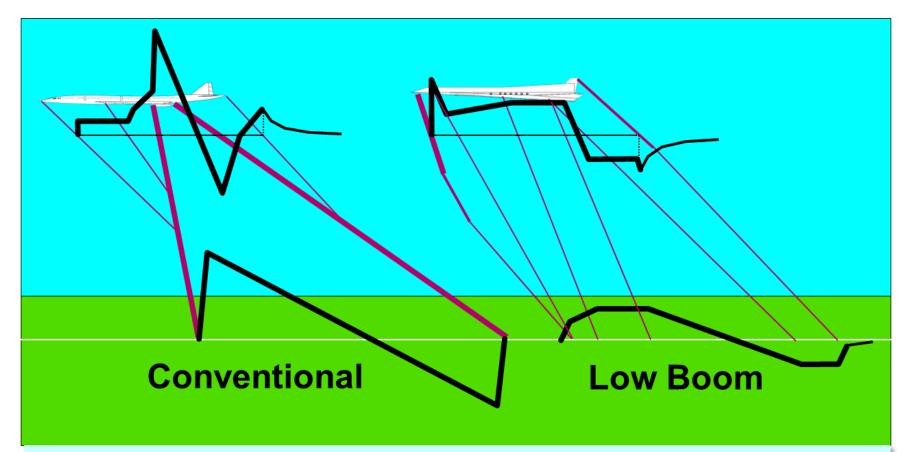
Supersonic Tech Survey0.3 psf Front Shock

F-5E Shaped Sonic Boom Demonstration -2003

Modified F-5E nose to reduce front shock
0.7 – 0.8 psf Front Shock

Quiet Supersonic Transport - 2001-2003

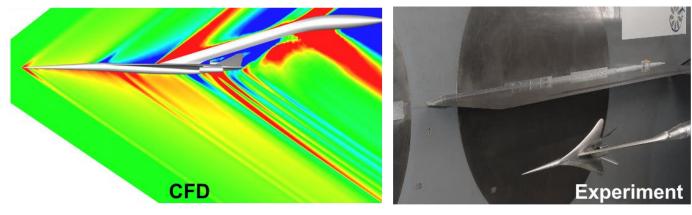
•Feasible Low Boom Transportation •0.7 – 0.8 psf Front Shock


D-SEND-2011

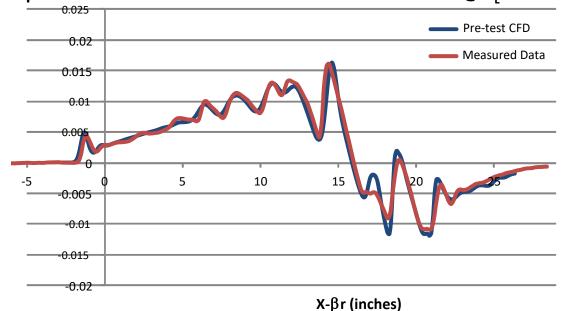
•Droppped shaped axisymmetric bodies from ~100,000 ft altitude to produce 0.25 psf flattop

FUNDAMENTALS OF SHAPED BOOM DESIGN

TAILORING THE
VOLUME & LIFT
DISTRBUTION TO
PREVENT
COALESCENCE IS THE
KEY TO SHAPING
SONIC BOOM


Sonic Boom Reduced by:

- Area Tailoring
- Lift Tailoring


- Lower Weight
- Increased Lifting Length

NASA STRATEGIC IMPLEMENTATION PLAN

Comparison of Pre-test CFD and Wind Tunnel Measurements @ $C_1 = 0.142$

ENGINEERING WORK DONE
ON N+2 SUPERSONIC
VALIDATIONS PROGRAM
SHOWED THAT MODERN
DESIGN TOOLS ARE
ADEQUATE FOR SHAPED
BOOM DESIGN

LBFD - PROGRAM OBJECTIVES

• Develop, build, and flight test a clean-sheet X-plane that can be used to support future regulatory change efforts

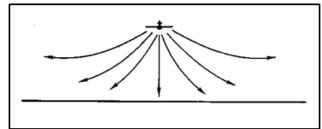
 Demonstrate that noise from sonic booms can be reduced to a level acceptable to the population residing under future supersonic flight

paths

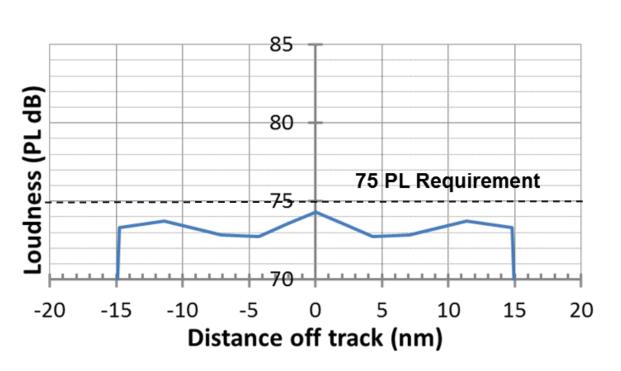
Red	quirement Name	Requirement	C608.1
MR-1	Boom Traceability	Scaled dP & PLdB	
		<75 PLdB,	74.3 PLdB,
MR-2	Shaped Signature	max energy < 10 Hz	•
MR-3	Boom Variability	70-80 PLdB	70-80 PLdB 🎻
		<76 PLdB mean,	74.5 PLdB,
MR-4	Cruise Deviations	<1.4 PL RMS	V
MR-5	Mach Number	>1.4 for low boom	1.4
MR-6	Pass Length	2 x 50 nm	
MR-7	Flight Rate	3 flights in 9 hours	
MR-8	Day/Night Ops.	Equipped	
MR-9	Flight Ops.	Day/night VFR, ILS, transit IMC	*
		climb/accelerate	3,000 FPM at
MR-11	Climb Rate	cooncurrently	top of climb 😽

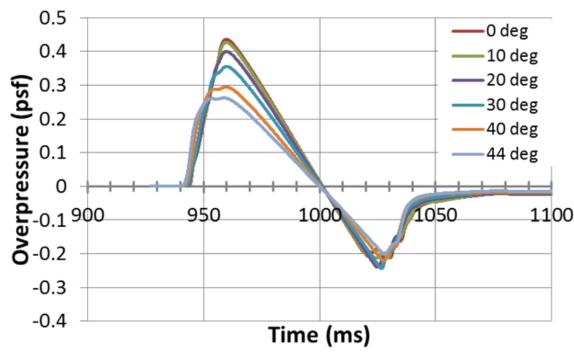
CONFIGURATION C607 OVERVIEW

Configuration C607	
MTOW	24,300 lb
Empty Weight	14,000 lb
Maximum Fuel	8,000 lb
Payload	500 lb
S _{ref}	486 sq ft
W/S	46 lb/ft ²
T/W	~0.9
Engine	1xGE F414
Design Mach	1.42
Loudness	<75 PLdB
1	ı
← 29 ft	6 in ->
	<u> </u>
	13 ft 7 in
-	
	ĭ

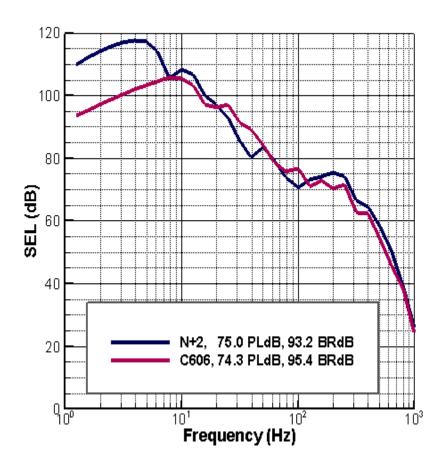


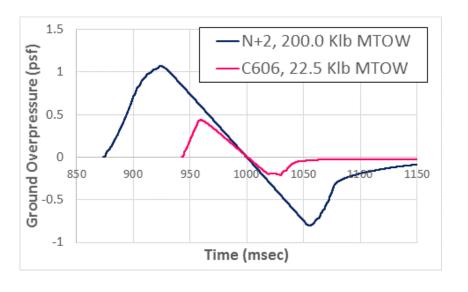
DESIGN FEATURES





SHAPED BOOM PERFORMANCE


C606 trimmed at Wt=18,800 lb
M1.42 Alt=54,000 ft AOA=1.70 deg CGLOC=844 in PC=122 Tail Incidence=2.60 deg

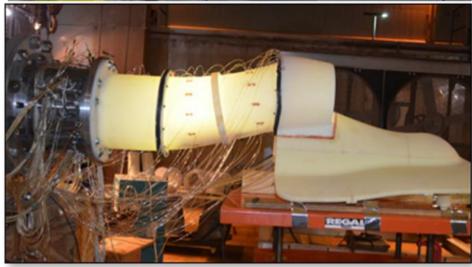


SIGNATURE TRACEABILITY

- N+2 frequency content matched at all frequencies over 8 Hz
- Variability at all frequencies and/or increased high frequencies to match a range of possible products

PRELIMINARY DESIGN ACCOMPLISHMENTS

- Design maturation
- Subsystem integration
- Control law development
- High Speed Wind tunnel aerodynamic and inlet performance validation



PRELIMINARY DESIGN ACCOMPLISHMENTS

- Low speed wind tunnel model test - Validation of low speed stability and control predictions
- Static inlet test –
 Validation of static and low speed inlet performance
- Cockpit Mock-Up fabrication

LOW SPEED WIND TUNNEL TEST OVERVIEW

Test Details

- C608.1, 15% scale (~14' long)
- Bullet-faired nacelle, 100% spillage

NASA Langley 14x22 wind tunnel

• 14.5' x 21.75' x 50' test section

Objectives

- Stability & control (S&C) test
 Out-of-ground effects (OGE)
 In-ground effects (IGE)
- Flow visualization

Questions?
© 2018. Lockheed Martin Corporation. All Rights Reserved.

LOCKHEED MARTIN

#