

Engine-Airframe Integration for Environmentally Friendly and Economically Viable Future Transport Aircraft

Arne Stürmer

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institute of Aerodynamics & Flow Technology Braunschweig, Germany

6th UTIAS International Workshop on Aviation and Climate Change May 16-18, 2018 University of Toronto

Institute for Aerospace Studies Toronto, Ontario, Canada

Wissen für Morgen

DLR Institute of Aerodynamics & Flow Technology Engine Integration Activities - History

Turbofans:

- Integration activities since 1990s
- Analysis and design of installed through flow nacelles & turbo powered simulators
- Experimental & numerical work (internal, DLR-ONERA, EU, Lufo, DLR-RRD, ...)
- Analysis and optimization of under wing & rear mounted installations

- CFD-based open rotor analysis experience built up during the past
 15 years
- Propeller: cooperation with Airbus
- CROR activities since 2007: internal, Rolls-Royce, Airbus, EU-JTI Clean Sky

Engine-Airframe Integration: New Challenges Key Driver for Future Efficient Transport Aircraft

Turbofans:

- Novel engine-airframe integration concepts out of necessity:
 - Under-wing close-coupled UHBR installations
- Novel engine-airframe integration concepts potentially enabling further system efficiency benefits:
 - Over-wing (close-coupled) UHBR installations
 - Aft-fuselage (or over-wing) BLI UHBR installations

- Novel propeller concepts and installations for low-noise regional aircraft
- Novel CROR/Open Rotor concepts and installations for regional & short-medium haul transport aircraft

Engine-Airframe Integration: New Challenges Key Driver for Future Efficient Transport Aircraft

Turbofans:

- UHBR in general:
 - Improved modeling/prediction capabilities for UHBR engine-airframe installations
- BLI:
 - UHBR capabilities PLUS refined analysis and evaluation capabilities

- Good aerodynamic/aeroacoustic toolsets established allowing for support of configuration analysis
- Extension of multi-physics analysis capabilities through improved integration of structural & aeroelastic tools

Engine-Airframe Integration for Environmentally Friendly and Economically Viable Future Transport Aircraft

- Introduction & Motivation
- CROR: Validation of DLRs CFD/CAA Process Chain for Reliable Aerodynamic & Aeroacoustic Performance Predictions of Installed CROR Engines
 - The EU 7th FP Clean Sky JTI-SFWA Project
 - Test Case Description
 - Numerical Approach Description
 - Aerodynamic & Aeroacoustic Analysis & Validation
- UHBR Turbofans: Simulation Capabilities for UHBR Turbofans Featuring a Rotating Fan
 - The CS2 ASPIRE Project
 - Numerical Approach Description
 - Test Case Description
 - Aerodynamic Anlaysis & Validation
- Conclusions and Outlook

Engine-Airframe Integration for Environmentally Friendly and Economically

Viable Future Transport Aircraft

Validation of DLRs CFD/CAA
Process Chain for Reliable
Aerodynamic & Aeroacoustic
Performance Predictions of
Installed CROR Engines

6th UTIAS International Workshop on Aviation and Climate Change May 16-18, 2018

University of Toronto Institute for Aerospace Studies Toronto, Ontario, Canada

Introduction & Motivation: CROR Propulsion Efficiency Advantage

$$F = m(v_9 - v_0)$$

$$\eta = 2/(1 + v_9/v_0)$$

- Environmental & fuel cost concerns drive need for propulsion system advances
- CROR propulsive efficiency better than TF by a comfortable margin but technical challenges on installation, noise and safety/certification remain
- Rotor-rotor interaction are primary noise source mechanisms

The EU Clean Sky JTI SFWA Project

- Broad scope of CROR research being addressed in the EU Clean Sky Joint Technology Initiative Smart Fixed Wing Aircraft Project (JTI SFWA) since 2008 [1]
- Focus of Airbus-led CROR-WP 2.2:
 - De-risk CROR as engine for single-aisle aircraft
 - Studies of novel noise reduction technologies
 - Comprehensive aerodynamic & aeroacoustic WTT of 1/7th-scale Z08- and 1/5th-scale Z49-model at low- and high-speed flight conditions
 - Numerical studies in support of test preparation and for tools validation
- Generic Airbus-designed AI-PX7 CROR is the focus engine configuration [2]

11x9 bladed configuration

• 10% aft rotor diameter crop

| Stuermer, and Akkermans, R.: "Multidisciplinary analysis of CROR propulsion systems: DLR activities in the JTI SFWA project", CEAS Aeronautical Journal, 2014.

JTI-SFWA Task 2.2.4.5: Installation Effects Analysis Z08 CROR Test Cases

	Mach	α [º]	n [rpm]	β _{75,F}	β _{75,A}
Isolated: R34P87D472	0.2	0	n _F =n _A		Identical
Isolated: R34P87D473	0.2	3	n _F =n _A	Identical	
Pylon: R21P28D206	0.2	3	n _F =n _A	identicai	
Aircraft: R69P274D1760	0.2	8	n _F =n _A		

- Family of 1:7-scale Z08-CROR models tested @ low-speed flow conditions in DNW-LLF
- Previous publications [3,4]: Baseline validation and study of installation effects using isolated & semiinstalled Z08-CROR test
 - Angle of attack
 - Pylon wake
- Present work: Demonstration of applicability of methods and approaches to a complete aircraft

DLR.de • Folie 10

JTI-SFWA Task 2.2.4.5: Installation Effects Analysis Z08 CROR Test Cases

- Aircraft is modeled in take-off high-lift configuration with defelected sealed slat and flap
- Study of necessity of including sting in validation CFD/CAA activities:
 - Notable impact on empennage flowfield, e.g. in angle of attack distributions
 - Strong impact on CROR performance expected due to differences in perturbed front rotor inflow
- Sting required and included in simulations
- Single (right hand) CROR case selected to reduce uncertainty in (aeroacoustic) evaluation

DLR-AS CROR Studies: Typical Numerical Approach

- Typically multi-disciplinary simulations done, coupling aerodynamics (DLR TAU-Code) and aeroacoustics (DLR APSIM+Code)
- TAU uRANS simulations for aerodynamic data & input for the CAA-analysis
 - 2nd order dual time method for unsteady flows
 - 2nd order central scheme for spatial discretization
 - LUSGS time integration
 - SA turbulence model with vortical correction
 - Chimera & motion libraries for moving bodies
 - Simulations run using 720 cores of DLR C2A2S2E cluster in Braunschweig
 - 8-block Chimera mesh with 205.0x10⁶ nodes
- DLR FW-H Code APSIM+ for farfield noise predictions
 - Permeable surface approach used based on nacelle Chimera data

Aerodynamic Analysis: Isolated CROR – Front Blade

Aerodynamic Analysis: AoA-Effect – Front Blade

Aerodynamic Analysis: Pylon-Effect – Front Blade

Aerodynamic Analysis: Aircraft-Effect – Front Rotor

Aerodynamic Analysis: Aircraft-Effect – Front Blade

Aerodynamic Analysis: Mean Performance - Validation

		Isolated @ α=0º	Isolated @ α=3º	Pylon @ α=3º	Aircraft @ α=8º
Rotor P/P _W	T/T _{WTT}	0.9986	0.9967	0.9947	0.9710
	P/P _{WTT}	0.9637	0.9629	0.9639	0.9483
	η/η _{WTT}	1.0406	1.0384	1.0342	1.0276
Rotor	T/T _{WTT}	1.0066	1.0026	1.0073	0.9929
	P/P _{WTT}	1.0029	1.0015	1.0071	0.9977
	η/η _{WTT}	1.0079	1.0046	1.0024	1.0024

- Very good match with WTT seen in previous studies
- Predictions of
 - Thrust to within <1% accuracy consistently
 - Power at <1%/<4% accuracy consistently
- Slightly larger discrepencies for aircraft case
 - Sting geometry for $\alpha=9^{\circ}$ was used for simulation at $\alpha=8^{\circ}$

Aeroacoustic Analysis: Validation Data and Specifications

- Validation of numerical results with acoustic data from DNW-LLF WTT
- In-flow traversing microphone array gives azimuthal directivity information
- WTT data post-processed and corrected to represent tonal noise on a 16.6m sphere

Aeroacoustic Analysis: Front Rotor Tone Installation Effect

- APSIM+-runs for **all cases** using uRANS input at **highest** temporal resolution (2772p)
- Good prediction of front rotor tone directivity and magnitude for aircraft case between 60<φ<130
- Generally well predicted difference of front rotor tone directivity between aircraft and pylon case
- Very good agreement with WTT data for isolated CROR at incidence case
- Trend of pylon effect well predicted, good agreement with WTT in terms of magnitude for most angles

Aeroacoustic Analysis: OASPL Installation Effect

- APSIM+-runs for **all cases** using uRANS input at **highest temporal resolution (2772p)**
- Good prediction of OASPL directivity and magnitude for aircraft case between 30<φ<90
- Downstream offset most likely due to neglect of acoustic reflection on tailplanes & stinf
- Very good agreement with WTT data for pylon case
- Good match for isolated CROR at incidence case directivity

Numerical Approach Validation: Summary & Conclusions

- High-quality experimental data from DNW-LLF tests of the Airbus Z08 CROR configuration in EU JTI SFWA
 project has enabled a robust validation of DLRs CFD and CAA tools for coupled simulations of CRORs
- uRANS spatial and temporal resolution impact was investigated in detail
 - Mean aerodynamic performance including 1P loads can be predicted with high accuracy practically irrespective of mesh density and time-step size
 - To resolve unsteady aerodynamic rotor-rotor interactions (and thus noise emissions) spatial resolution
 has an impact certainly for higher frequency tonal noise predictions
 - Temporal resolution requirements must be met to enable adequate resolution of unsteady flow phenomena – and thus noise emissions
- Good prediction of aerodynamic & aeroacoustic installation effects, in line with WTT
- Good maturity of CFD/CAA-approach for the analysis of CROR configuration performance and noise
- Outlook: Continued work in progress in CS2 project to investigate and refine additional OR-powered aircraft configurations to improve economic viability case for this propulsion system for single aisle aircraft class

Introduction & Overview

Introduction & Motivation:

- Future improvements in overall aircraft efficiency require an increasingly closer coupling of airframe and engine both physically as well as in terms of treatment in the design process.
- More pronounced mutual interactions
- Need to account for relevant (unsteady) engine impacts on the airframe and vice versa
- Today, some critical operating conditions show critical engine-airframe interactions (X-wind)
- ASPIRE: DLR TAU rotating fan unsteady simulations demonstration & validation

The ASPIRE project: <u>Aerodynamic and acou</u><u>S</u>tic for high-by-<u>Pass rat</u> to tu<u>R</u> bofan int <u>Egration</u>

- 1st call for partners in AIRFRAME-ITD, closely linked to LPA-IADP
- Aerodynamic & acoustic capabilities for close coupled, UHBR turbofan-aircraft integration
- Project partners: Airbus, DLR, NLR, ONERA and TsAGI
- Q1/2016 Q3/2018

Numerical Approach: Results Analysis & Discussion Summary & Outlook

The CS2 ASPIRE Project Configuration Overview

- Generic isolated UHBR engine for single aisle aircraft
 - Generic Fan/OGV-Geometry designed by DLR-AT: 16 fan blades, 36 OGVs
 - Generic (very) short cowl nacelle designed by Airbus
 - Initial simplified isolated engine test case: No pylon, no bifurcations
- Broad range of operating points covering cruise, take-off and approach conditions defined & specified

Numerical Approach: Mesh Philosophy & Generation

- Analogous to studies performed in task 2.2.4.5 in JTI SFWA:
- Mesh family for a robust validation & parametric study
- 4 block-structured ICEM-Hexa/CentaurSoft CentaurSof mesh blocks (Centaur: Farfield; ICEM: Nacelle, Rotor, OGV)
 - Fine nearfield mesh to resolve acoustic installation & non-linear propagation effects in uRANS
 - Particular focus on rotor-rotor-interface-mesh for optimal wake transfer

	Coarse	Medium	Base	
Farfield	2.881.147	6.505.456	8.385.163	
Nacelle	10.902.398	35.476.072	83.206.386	
Fan	6.632.704	21.438.720	49.700.352	
OGV	8.014.500	25.594.344	58.953.708	
Total	28.430.749	89.014.592	200.245.609	

Numerical Approach: Robust CFD/CAA Validation Study of Spatial & Temporal Discretization

Dependance of the solution quality on spatial resolution [1]
Dependance of the solution quality on temporal resolution
Simulation matrix to study impact of both parameters

	oarse	Medium	Base	
Δt/rev	90p	90p	90p	
	180p	180p	180p	
	360p	360p	360p	
	720p	720p	720p	
	1152p	1440p	1440p	
		1728p	2304p	

Aerodynamic Analysis: Sideline Operating Point Isolated UHBR Engine @ Sideline

SID Operating Point Specifications			
h [ft]	700		
Mn	0.27		
α [°]	15		

Simulations run for several enngine operating points

- Here: Focus on sideline case

Aerodynamic Analysis: Isolated UHBR Engine @ Sideline Surface Flow Topology

Aerodynamic Analysis: Isolated UHBR Engine @ Sideline Rotor-Stator Flow Interactions

Aerodynamic Analysis: Isolated UHBR Engine @ Sideline Fan Unsteady Loading

Aerodynamic Analysis: Isolated UHBR Engine @ Sideline Fan Unsteady Loading

Aerodynamic Analysis: Isolated UHBR Engine @ Sideline OGV Unsteady Loading

Aerodynamic Analysis: Isolated UHBR Engine @ Sideline OGV Unsteady Loading

Aerodynamic Analysis: Isolated UHBR Engine @ Sideline Fan Stage & Chimera Interface Performance Analysis

Fan stage performance: Relative error versus specs

Massflow conservation across Chimera interfaces

Aerodynamic Analysis: Isolated UHBR Engine @ Sideline Comparison: uRANS with TAU Engine BC

Classical run of ASPIRE engine at SID with TAU BC

	uRANS	Δ [%]	TAU BC	Δ [%]
m ₂ [kg/s]	+0.43		+0.94	
m ₈ [kg/s]	-0.57		-0.01	

- Azimuthally uniform jet development in BC simulations
 - Non-uniform fan stage loading impact on jet development could be of relevance for some (future) cases

Engine-Airframe Integration: Key Driver for Future Efficient Transport Aircraft

Turbofans:

- UHBR-specific tools development and analysis in collaboration with DLR AT, NLR, ONERA, Airbus, RRD, TU BS & others
 - CS2 ASPIRE, CS2 LPA, EU AVACON, LuFo PRESTIGE, SFB880
- BLI-specific tools development and analysis in collaboration with DLR AT, Airbus
 - DLR AGATA, CS2 LPA, Industry contracts

- Open rotor tools development and analysis in collaboration with NLR, ONERA, Airbus, RRD & others
 - CS2 LPA, LuFo LONOPAIV, SFB880

Engine-Airframe Integration for Environmentally Friendly and Economically Viable Future Transport Aircraft

Arne Stürmer

Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR) Institute of Aerodynamics & Flow Technology Braunschweig, Germany

6th UTIAS International Workshop on Aviation and Climate Change May 16-18, 2018 University of Toronto

Institute for Aerospace Studies Toronto, Ontario, Canada

Questions?

Wissen für Morgen