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DLR Institute of Aerodynamics & Flow Technology
Engine Integration Activities - History

Turbofans:
* Integration activities since 1990s

» Analysis and design of installed through flow nacelles & turbo
powered simulators

« Experimental & numerical work (internal, DLR-ONERA, EU, Lufo,
DLR-RRD, ...)

» Analysis and optimization of under wing & rear mounted installations

Propeller & CROR:

» CFD-based open rotor analysis experience built up during the past
15 years

* Propeller: cooperation with Airbus

 CROR activities since 2007: internal, Rolls-Royce, Airbus, EU-JTI
Clean Sky
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Engine-Airframe Integration: New Challenges
Key Driver for Future Efficient Transport Aircraft

Turbofans:

* Novel engine-airframe integration concepts - out of necessity:
» Under-wing close-coupled UHBR installations

* Novel engine-airframe integration concepts - potentially enabling further system efficiency benefits:
» Over-wing (close-coupled) UHBR installations
» Aft-fuselage (or over-wing) BLI UHBR installations

Propeller & CROR:
* Novel propeller concepts and installations for low-noise regional aircraft
* Novel CROR/Open Rotor concepts and installations for regional & short-medium haul transport aircraft

‘ i DLR
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Engine-Airframe Integration: New Challenges
Key Driver for Future Efficient Transport Aircraft

Turbofans:

 UHBR in general:
» Improved modeling/prediction capabilities for UHBR engine-airframe installations

e BLI:
 UHBR capabilities PLUS refined analysis and evaluation capabilities
Propeller & CROR:
« Good aerodynamic/aeroacoustic toolsets established allowing for support of configuration analysis
» Extension of multi-physics analysis capabilities through improved integration of structural & aeroelastic tools

‘ i DLR
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Engine-Airframe Integration for Environmentally Friendly and Economically
Viable Future Transport Aircraft

Introduction & Motivation

CROR: Validation of DLRs CFD/CAA Process Chain for Reliable Aerodynamic & Aeroacoustic Performance
Predictions of Installed CROR Engines

- The EU 7th FP Clean Sky JTI-SFWA Project

- Test Case Description

- Numerical Approach Description

- Aerodynamic & Aeroacoustic Analysis & Validation

UHBR Turbofans: Simulation Capabilities for UHBR Turbofans Featuring a Rotating Fan
- The CS2 ASPIRE Project
- Numerical Approach Description
- Test Case Description
- Aerodynamic Anlaysis & Validation

Conclusions and Outlook

i DLR
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Engine-Airframe Integration for Environme 1dly and co S
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Introduction & Motivation:
CROR Propulsion Efficiency Advantage
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* Environmental & fuel cost concerns drive need for propulsion system advances

* CROR propulsive efficiency better than TF by a comfortable margin but
technical challenges on installation, noise and safety/certification remain

* Rotor-rotor interaction are primary noise source mechanisms
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The EU Clean Sky JTI SFWA Project

» Broad scope of CROR research being addressed in the EU Clean Sky Joint
Technology Initiative Smart Fixed Wing Aircraft Project (JTI SFWA) since 2008 [1]

* Focus of Airbus-led CROR-WP 2.2:
» De-risk CROR as engine for single-aisle aircraft
» Studies of novel noise reduction technologies
» Comprehensive aerodynamic & aeroacoustic WTT of 1/7th-scale Z08- and
1/5th-scale Z49-model at low- and high-speed flight conditions
* Numerical studies in support of test preparation and for tools validation

» Generic Airbus-designed AI-PX7 CROR is the focus engine configuration [2]
» 11x9 bladed configuration
» 10% aft rotor diameter crop

hif | Stu " and Akkermans, R.: MuItTFafxlm \4 _ s R
DLR CLEANSKY J ;.l,— - oject”, CEAS Aeronautical Journal, 201* e VR :

s Teanrsiey iniains

- [2] Negulescu, C.: “Airbus Al-PX7 CROR#H_

: Courtesy of Airbus
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JTI-SFWA Task 2.2.4.5: Installation Effects Analysis
Z08 CROR Test Cases

Blade Downsweep

e Family of 1:7-scale Z08-CROR models tested @
low-speed flow conditions in DNW-LLF

* Previous publications [3,4]: Baseline validation and

_mmm study of installation effects using isolated & semi-

installed Z08-CROR test

Isolated: R34P87D472 Ng=N, Anale of attack
» Angle of attac
Identical Identical * Pylon wake
Pylon: R21P28D206 | R B « Present work: Demonstration of applicability of
Aircraft: R69P274D1760 [V 8 ng=n, methods and approaches to a complete aircraft

d §]§turmer Arne und Akkermans, R.A.D.: Wﬁatl of Aef
tors at Low-Speed Flight Conditions” A&[\A 2014-3133, £
~ [4] sturmer, Arne: “Validation of Instalwl i fect'Pre
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JTI-SFWA Task 2.2.4.5: Installation Effects Analysis
Z08 CROR Test Cases

 Aircraft is modeled in take-off high-lift configuration with defelected sealed slat and flap

» Study of necessity of including sting in validation CFD/CAA activities:
» Notable impact on empennage flowfield, e.g. in angle of attack distributions
» Strong impact on CROR performance expected due to differences in perturbed front rotor inflow

» Sting required and included in simulations
 Single (right hand) CROR case selected to reduce uncertainty in (aeroacoustic) evaluation

i DLR
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DLR-AS CROR Studies:
Typical Numerical Approach

» Typically multi-disciplinary simulations done, coupling aerodynamics
(DLR TAU-Code) and aeroacoustics (DLR APSIM+Code)

 TAU uRANS simulations for aerodynamic data & input for the CAA-analysis e :
2" order dual time method for unsteady flows - |

2" order central scheme for spatial discretization |

« LUSGS time integration URANS CFD ||

« SA turbulence model with vortical correction ‘ |

» Chimera & motion libraries for moving bodies |

« Simulations run using 720 cores of DLR C2A2S2E cluster in Perturbation ||
Braunschweig Nearfield |

« 8-block Chimera mesh with 205.0x108 nodes ‘ :

* DLR FW-H Code APSIM+ for farfield noise predictions APSIM+ !

* Permeable surface approach used based on nacelle Chimera data

i DLR
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Aerodynamic Analysis: Isolated CROR - Front Blade
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Aerodynamic Analysis: AoA-Effect — Front Blade
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Aerodynamic Analysis: Pylon-Effect — Front Blade
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Aerodynamic Analysis: Aircraft-Effect — Front Rotor
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Aerodynamic Analysis: Aircraft-Effect — Front Blade
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| WTT Front Rotor Thrust | Front Rotor Power
Aerodynamic Analysis: 4 ‘
Mean Performance - Validation
@ a=0° @ a=3° @ a=3° @ a=8° - = _

Front  T/Tyrr 0.9986 0.9967 0.9947 0.9710  foss IR 539 [ o<

ROOr [P/ 0.9637 0.9629 0.9639 09483 || | sl ]at < "

NN 1.0406 1.0384 1.0342 1.0276  [ooz a3

Aft  T/Tyrr 1.0066 1.0026 1.0073 0.9929 | | -
ROOT | oy 1.0029 1.0015 1.0071 0.9977 |

NMwrr 1.0079 1.0046 1.0024 IFOG2ARN [ =

0.98 4 0.98 4

- Very good match with WTT seen in previous studies

- Predictions of _ _
- Thrust to within <1% accuracy - consistently 102 AttfFofor Thive! 102 AftjFotor Poper
- Power at <1%/<4% accuracy - consistently

- Slightly larger discrepencies for aircraft case
- Sting geometry for a=9° was used for simulation at a=8"
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- Validation of numerical results with acoustic data from DNW-LLF WTT
- In-flow traversing microphone array gives azimuthal directivity information
- WTT data post processed and corrected to represent tonal noise on a 16.6m sphere

E DLR CL64N5KY
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Aeroacoustic Analysis: Front Rotor Tone
Installation Effect

'

- APSIM+-runs for all cases using uRANS input at highest
temporal resolution (2772p)

- Good prediction of front rotor tone directivity and
magnitude for aircraft case between 60<¢$<130

- Generally well predicted difference of front rotor tone
directivity between aircraft and pylon case

- Very good agreement with WTT data for isolated CROR at
incidence case

- Trend of pylon effect well predicted, good agreement with
WTT in terms of magnitude for most angles
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Aeroacoustic Analysis: OASPL
Installation Effect

OASPL [dB]

- APSIM+-runs for all cases using uRANS input at
highest temporal resolution (2772p)

- Good prediction of OASPL directivity and magnitude
for aircraft case between 30<¢<90

- Downstream offset most likely due to neglect of
acoustic reflection on tailplanes & stinf

I - Very good agreement with WTT data for pylon case

*

- Good match for isolated CROR at incidence case

5dB
—— AC @ u=8° SR
A directivity

0 3 60 “‘ 90
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Numerical Approach Validation:
Summary & Conclusions

» High-quality experimental data from DNW-LLF tests of the Airbus Z08 CROR configuration in EU JTI SFWA
project has enabled a robust validation of DLRs CFD and CAA tools for coupled simulations of CRORs

URANS spatial and temporal resolution impact was investigated in detail
 Mean aerodynamic performance — including 1P loads - can be predicted with high accuracy
practically irrespective of mesh density and time-step size
» To resolve unsteady aerodynamic rotor-rotor interactions (and thus noise emissions) spatial resolution
has an impact — certainly for higher frequency tonal noise predictions
 Temporal resolution requirements must be met to enable adequate resolution of unsteady flow
phenomena — and thus noise emissions

Good prediction of aerodynamic & aeroacoustic installation effects, in line with WTT
Good maturity of CFD/CAA-approach for the analysis of CROR configuration performance and noise

Outlook: Continued work in progress in CS2 project to investigate and refine additional OR-powered aircraft
configurations to improve economic viability case for this propulsion system for single aisle aircraft class
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Engine-Airframe Integration for
Environmentally Friendly & Economically
Viable Future Transport Aircraft

Simulation Capabilities for UHBR
Turbofans Featuring a Rotating Fan
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Introduction & Overview

Introduction & Motivation:

- Future improvements in overall aircraft efficiency require an increasingly closer coupling of
airframe and engine — both physically as well as in terms of treatment in the design process.

- More pronounced mutual interactions

- Need to account for relevant (unsteady) engine impacts on the airframe and vice versa

- Today, some critical operating conditions show critical engine-airframe interactions (X-wind)

- ASPIRE: DLR TAU rotating fan unsteady simulations demonstration & validation

The ASPIRE project: Aerodynamic and acouStic for high-by-Pass rat/o tuRbofan intEgration

- 1t call for partners in AIRFRAME-ITD, closely linked to LPA-IADP

- Aerodynamic & acoustic capabilities for close coupled, UHBR turbofan-aircraft integration
- Project partners: Airbus, DLR, NLR, ONERA and TsAGI
- Q1/2016 -Q3/2018

Numerical Approach:
Results Analysis & Discussion
Summary & Outlook
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The CS2 ASPIRE Project
Configuration Overview

Outlet BC

7

| Core Engine
) Inlet BC
]

- Generic isolated UHBR engine for single aisle aircraft
- Generic Fan/OGV-Geometry designed by DLR-AT: 16 fan blades, 36 OGVs
- Generic (very) short cowl nacelle designed by Airbus
- Initial simplified isolated engine test case: No pylon, no bifurcations
- Broad range of operating points covering cruise, take-off and approach conditions defined & specified

} Z )P e
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Numerical Approach:
Mesh Philosophy & Generation

32 cells

Full annulus:
1152/cells

- Analogous to studies performed in task 2.2.4.5 in JTI SFWA:
- Mesh family for a robust validation & parametric study
- 4 block-structured ICEM-Hexa/CentaurSoft CentaurSof
mesh blocks (Centaur: Farfield; ICEM: Nacelle, Rotor, OGV)
- Fine nearfield mesh to resolve acoustic installation &
non-linear propagation effects in uRANS
- Particular focus on rotor-rotor-interface-mesh for
optimal wake transfer

2.881.147 6.505.456 8.385.163

10.902.398  35.476.072 83.206.386
6.632.704 21.438.720 49.700.352
8.014.500 25.594.344 58.953.708
28.430.749  89.014.592  200.245.609
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Numerical Approach: Robust CFD/CAA Validation
Study of Spatial & Temporal Discretization

Wake Vorticity Contours Wake Vorticity Contours Wake Vorticity Contours Wake Vorticity Contours
Radial Position: r/R.=0.5 Radial Position: r/R.=0.5 Radial Position: r/R.=0.5 Radial Position: r/R.=0.5
A¥=0.5°/dt A¥=0.25°/dt A¥=0.1136dt

Wake Vorticity Contours
Radial Position: r/R_=0.5

Spatial Resolution ++

- loarse

Dependance of the solution quality on spatial resolution [1] e =iz 90p
Dependance of the solution quality on temporal resolution 180p 180p 180p
Simulation matrix to study impact of both parameters 360p 360p 360p

720p 720p 720p
1152p 1440p 1440p

‘ 4#7 e
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Aerodynamic Analysis: Sideline Operating Point
Isolated UHBR Engine @ Sideline

SID Operating Point Specifications

h [ft] 700
Mn 0.27
al’] 15

- Simulations run for several enngine operating
points
- Here: Focus on sideline case

} AL
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Aerodynamic Analysis: Isolated UHBR Engine @ Sideline
Surface Flow Topology
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Aerodynamic Analysis: Isolated UHBR Engine @ Sideline
Rotor-Stator Flow Interactions
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Aerodynamic Analysis: Isolated UHBR Engine @ Sideline
Fan Unsteady Loading
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Aerodynamic Analysis: Isolated UHBR Engine @ Sideline
Fan Unsteady Loading
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Aerodynamic Analysis: Isolated UHBR Engine @ Sideline
OGV Unsteady Loading
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Aerodynamic Analysis: Isolated UHBR Engine @ Sideline
OGV Unsteady Loading
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Aerodynamic Analysis: Isolated UHBR Engine @ Sideline
Fan Stage & Chimera Interface Performance Analysis
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Aerodynamic Analysis: Isolated UHBR Engine @ Sideline

 Classical run of ASPIRE engine at SID with TAU BC

[ uRANs | aDx] [TAUBC [al%] |

m, [kg/s] +0.43 +0.94
mg[kg/s] -0.57 -0.01

« Azimuthally uniform jet development in BC simulations
* Non-uniform fan stage loading impact on jet development
could be of relevance for some (future) cases
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Engine-Airframe Integration:
Key Driver for Future Efficient Transport Aircraft

=™ \ \\\\\\\:\‘\‘a'Tﬁ

Turbofans:

 UHBR-specific tools development and analysis in collaboration with DLR AT, NLR, ONERA, Airbus, RRD, TU
BS & others
« CS2 ASPIRE, CS2 LPA, EU AVACON, LuFo PRESTIGE, SFB880

» BLI-specific tools development and analysis in collaboration with DLR AT, Airbus
 DLR AGATA, CS2 LPA, Industry contracts

Propeller & CROR:

» Open rotor tools development and analysis in collaboration with NLR, ONERA, Airbus, RRD & others
 CS2 LPA, LuFo LONOPALIV, SFB880

‘ i DLR
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