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Background 
• Aviation is currently responsible for 3.5% of anthropogenic effective radiative forcing (Lee et al. 2020)

• Around 90% of civil aviation impacts are from passenger aircraft (plus hold freight) and around 10% freighters

• Long-term industry projections (e.g. Airbus, Boeing) were for continued rapid global demand growth
• Covid19 will offset this demand growth but probably not eliminate it
• The main driver is increases in global incomes, particularly outside North America/Europe
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• If ‘business as usual’ trends continue, aviation emissions will likely increase relative to other sectors
• E.g. CCC (2019) project aviation to be the UK’s highest-emitting sector by 2050

[Data: IEA, 
2019; ICAO, 
2019;  Dray et 
al. 2018]



Decarbonising aviation
• Deep decarbonisation within the aviation sector (i.e., excluding offsets) will 

likely require radical technology change
• Either rapid increase in drop-in biofuel/PTL 

• Or changing both aircraft and fuel (electricity, hydrogen, possibly LNG)
• The latter case may allow contrails/local emissions to be significantly reduced as well 

• But any radical technology change faces uptake barriers
• Aircraft development, fleet turnover and adoption timescales
• If conventional alternatives are also available, will airlines use it?

[Image sources: NASA, 2018; Airbus, 
2020; Wikimedia Commons]

• Will airlines who adopt the technology use it in a way 
that is consistent with emissions reduction goals?

• We can also look at the problem from the other 
direction: what characteristics would a new-
technology aircraft have to have to be 
successfully adopted and used?
• To do this we need to understand airline choices and 

behaviour…



Modelling airline behaviour
• Why look at airline competition?

q Airlines set fare and frequency and make technology choices based on profit- (or market share-) 
maximization

q This affects how they respond to system changes
§ E.g. cost changes, new competitors, new technology availability, …

• For example: new capacity at a congested airport
q Airlines can respond by, e.g.:

§ Changing frequency on existing routes
§ Starting new routes
§ Changing aircraft types used to/from the airport
§ Changing fares
§ Changing operations, frequency, fleet and demand at other airports (potentially across the world)

q These changes are interlinked, and have economic and environmental impacts

• Similarly, when a new technology becomes available, competition affects where, how and if it is 
used
q Can an airline increase its profits by using the new technology?



Each airline is a player in an n-player noncooperative game. They attempt to maximise profit by adjusting
the decision variables of airfares, flight frequency and choice of aircraft on routes within their network:
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given by a (MNL) choice model:
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Constraints also include fleet, the number of seats available on each aircraft type, and airport capacity.

Modelling airline competition - methodology
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• MEL is close to capacity with a new runway planned for 2025
• Good test case to examine airline behaviour under capacity constraints
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• System projected to 2025:
• Generate high/mid/low demand scenarios with 

different socioeconomic projections
• Estimate fleet using existing orders
• Model a range of (domestic) capacity values, 

from no expansion (35 flights/hour), to 50% of 
new slots (55 flights/hour) 

• Also examine how this interacts with costs
• Endogenously generated insights include:

• Capacity limits reduce cost pass-through level
• Significant scarcity rents at constrained airports
• Environmental/economic impact of airport 

expansion significantly affects other airports
[Dray et al. (2020)]

Example scenario - capacity expansion at Melbourne



Technology case study - the UK domestic aviation system
• Domestic demand was flat/decreasing even before Covid19
• However, projections often assume growth (e.g. DfT, 2017)
• Heavily affected by recent bankruptcies (e.g. Flybe, Thomas Cook)
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• Three challenges: 
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[Data: Sabre, 2017]



NAPKIN project
• 18-month Innovate UK-funded collaboration between UK manufacturers, airports and academics
• Key questions include:

• Could electric (or other alternative technology) aircraft be feasible on UK domestic routes?

• How would electric aircraft affect the business case for regional routes?
• What characteristics would an aircraft design have to have to be successful in this context?

• E.g. range, minimum runway length, seat capacity, noise, …

• Many different components:
• Aircraft designs

• Operational characteristics for a single flight

• Potential use in the UK domestic network

• Public acceptance

• This is an ongoing project and only very preliminary results so far

⇽ This talk



UK domestic system – airlines
• Once airlines that are co-operating are grouped together, only a few 

competitive routes
• Other routes include a mix of regional and remote/subsidised flights

• Mix of legacy carriers with diverse fleet and LCCs with homogenous fleet

• Key factors affecting airline decisions include:
• Airport capacity (particularly in the London area)

• High density of airports leading to multi-airport system choices – e.g. London, 
Glasgow, Belfast
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• Some restrictions on 
operations that may affect 
technology uptake 
• Short runways

• Curfew impact on number 
of flights/day 

• Noise regulations

• Fuel costs are relatively small 
due to short distances
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UK Domestic System - Passengers

• Key passenger choices:
• Mode choice – air, rail, road all competitive on many 

routes
• Which airport to fly from/to in multi-airport systems

• Which airline to fly with (often choice of full 
service/LCC/regional carriers)

• For remoter regions, may be a choice of less frequent 
direct route vs. more frequent one-stop itinerary

• If electric aircraft were introduced, may be 
demand/fare effect from travellers who are willing to 
pay extra for a low-carbon option (survey ongoing)

• These choices are interlinked
• Current passenger demand model is a 3-level nested 

logit model (route/airport/mode choice)

• Currently at city-pair level but working towards smaller 
region-pair to capture multimodal journeys 0
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Key constraints
• Baseline: airlines are limited by the fleet they have available

• E.g., increasing frequency on one route → decreasing frequency on another
• Airlines with homogenous fleets (e.g. LCCs) have lower fleet-type costs but less flexibility 

• Airlines are limited by the capacity available at the airports they fly to 
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• Runway capacity (slots) is typically the bottleneck
• This constraint means airlines may use larger aircraft than 

they would prefer to and from congested airports

• Airlines are limited by the behaviour of their 
competitors
• E.g., if only one airline experiences a change in costs, they 

are less likely to pass through those costs to ticket price if 
they would lose market share by doing so

• What happens if we give airlines the option of 
alternative technology aircraft?
• Outcomes will depend on costs, capabilities, and how these 

interact with system constraints



Solving the model and validation
• Each airline in turn optimises its profits across its network (IBM cplex) until equilibrium is reached
• Aggregate outcomes match well to actual values but some differences at a segment level

• Passengers  who take a domestic flight to comment with an international flight are not covered

• Not all airlines are making a profit!
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Making an alternative technology available
• Likely characteristics of early electric aircraft:

• Small (modelled – 24 seats*)
• Range-limited (modelled – 711 km)
• Might have different requirements on runway length to 

conventional alternatives  (modelled – 1500 m)
• Cost differences including battery replacement, industrial 

electricity price  (e.g. Schäfer et al., 2019) 
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• Might be subject to 
different charges
• Some airports have 

suggested zero (initial) 
landing costs 

• Noise (and noise costs) 
may differ

• MTOW-based charges 
may be higher



Making an alternative technology available
• These electric aircraft are made available to airlines, who can choose to 

use them if they can increase their profits by doing so
• Some policy support assumed, e.g., no extra landing cost from higher MTOW

• The airline behaviour model tracks if they are used (for a given fuel 
price and set of electric aircraft characteristics) and where/how they 
are used
• E.g. initial test runs → used to provide more frequent service on competitive routes 

with no ground alternative
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Making an alternative technology available

• How does this depend on system 
characteristics?
• Fuel/electricity price dependence is 

relatively small
• This is because these flights are short-haul 

and other cost components are important
• E.g. Landing costs, maintenance, passenger 

taxes

• In practice this may mean that uptake is 
mostly dependent on:
• Airport/government decisions about per-

flight/ per-passenger charges

• Aircraft capabilities – e.g. does the design 
have sufficient range? 
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Making an alternative technology available

• How does this depend on system 
characteristics?
• Fuel/electricity price dependence is 

relatively small
• This is because these flights are short-haul 

and other cost components are important
• E.g. Landing costs, maintenance, passenger 

taxes

• In practice this may mean that uptake is 
mostly dependent on:
• Airport/government decisions about per-

flight/ per-passenger charges

• Aircraft capabilities – e.g. does the design 
have sufficient range? 
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Upcoming adjustments
• This is a work in progress – NAPKIN began November 2020
• Updated demand model under construction

• Capturing the impact of passengers making a ground journey to a different city to take a (domestic) flight

• Divides the UK into smaller regions, with access time to different airports considered

• Improving representation of conventional technology in smaller size classes
• E.g. competing aircraft are a mixture of turboprops and jet aircraft

• Considering other aspects of integrating new technology into current system
• Noise (cabin/airport-area) – difficult as noise characteristics may be significantly different

• Passenger acceptance / WTP for green aviation – surveys upcoming

• Testing different technologies
• E.g. short range hydrogen fuel cell retrofit aircraft

• Further model development (including consideration of much larger world regions and airport 
infrastructure dynamics) as part of the upcoming ToZCA project



In conclusion: technology characteristics
• Some conclusions

• These are initial/tentative conclusions from the first stage of the project
• Electric aircraft at literature characteristics could be commercially feasible, however:

• Short range is a potential barrier to adoption
• Because initial routes are very short-haul, uptake is relatively insensitive to fuel and electricity 

prices
• Factors such as landing costs and passenger taxes have a large impact if they are a greater fraction of 

operating cost at short distance
• Because initial aircraft are small, some indications that cost-effective use may be on short-haul 

routes where high frequency is an advantage and ground competition is limited
• E.g. routes that are relatively high demand/competitive 
• Limited or no road alternative
• Low-demand island routes are often NOT feasible (e.g. short runways)

• What does this mean for global aviation externalities?
• Very little (initially) - the substituted flights are a tiny fraction of global totals…
• BUT can help as part of a pathway towards more general uptake/acceptance of alternative 

technology



More information: www.atslab.org


