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Overview

• Weather relatedTransport and chemistry of aviation
NOx-emissions

• Open issues in calculating aviation RF-NOx

• Methane temporal mismatch
• Contribution and perturbation methods

• Flightpath 2050 and the Paris Agreement

• Conclusion



What is the relation between weather and aviation NOx climate impact?

Weather
Aviation NOx - RF
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Well established relation between NOx-ozone-methane (typical situation)
(e.g. Fuglestvedt et al 1999)

Different time scales for NOx, ozone, and methane

Grewe et al. (2017a)
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The role of the emission location
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The role of the emission location
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transport
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Rosanka et al. (2020)
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The role of the emission location
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The role of the emission location
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Weather data and Ozone Climate-Change-Functions
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Climatology of aviation
weather situations:
Winter W1-W5
Summer S1-S3
University Reading 
Irvine et al. 2013 

Contribution of a local
NOx emission to climate
change via ozone
formation

Clear relationship
between weather and 

CCFs
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Open issues in determining the contribution
of NOx aviation emissions to climate change

Temporal mismatch of NOx-
Ozone and NOx-Methane RF

Contribution calculation vs. 
Perturbation calculation
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How do we calculate O3-RF and CH4-RF

Annual NOx

emissions

Mean ozone
change

Comparison of a simulation
with aviation emissions and
without aviation emissions
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How do we calculate O3-RF and CH4-RF

Annual NOx

emissions

Analysis of the
oxidation capacity and
methane lifetime change.
Perturbation Lifetime: 12 years Steady-state reached after 

~3 x lifetime ~36 years
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without aviation emissions
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change
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How do we calculate O3-RF and CH4-RF

Annual NOx

emissions

Mean ozone
change

Analysis of the
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methane lifetime change
Perturbation Lifetime: 12 years Steady-state reached after 

~3 x lifetime ~36 years
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• Ozone decreases because ozone from 
road traffic decreases (12%) 

• Ozone net production rates increase 
ozone from other sectors increases (-
10%)

• Net Ozone change = 2%

Grewe et al. (2012, 2017)

Contribution of road traffic emissions to ozone

e.g. Pacific e.g. City Centres

Aviation
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Evolution of surface ozone during COVID-19

Mertens et al. 2021

Business As 
Usual

Changes due to
COVID-19

Emission Reductions

Ozone Measurements
and SimulationData
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Contribution of NOx emissions to ozone Radiative Forcings

Dahlmann et al. 2011

Aviation
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Total Aviation NOx Radiative Forcing

Lee et al 2021

Total NOx-ERF 2018 17.5    50?

Factor 2 difference due to diagnostics

Grewe et al. 2019

> Toronto Workshop > Grewe > May 2021DLR.de  •  Slide 17



Towards a roadmap: 
Evaluating the climate impact of aviation emission scenarios towards the 
Paris Agreement
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Summary

• Largest contribution to aviation climate impact: CO2, NOx and contrails

• NOx impacts varies with altitude and also within weather situations

• Open issues in determining the contribution of NOx aviation emissions to climate 
change: temporal mismatch / contribution analysis

• Flightpath 2050 goals are likely stabilizing climate impact from aviation

• However available technologies (ECATS scenario) are probably not meeting the 
goals. Will stronger electrification and “green” LH2 + climate friendly operations 
help?
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Thank you for your attentionThank you for your attentionThank you for your attentionThank you for your attention
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