

Opportunities for heat management in hydrogen fueled aircraft

UTIAS 7th International Workshop on Aviation and Climate Change (virtual), Tomas Grönstedt, 2021-05-20

- Preliminaries & targets
- Propulsion heat management general
- Propulsion heat management hydrogen
- Experimental activities
- Aircraft level modelling

Aviation emissions

- CO₂ emissions in 2018 amounted to 918 million tons.
- Long term temperature increase depend mainly on CO₂
 - 1 kg emitted today gives 1.1 kg equivalent CO_2 in 100 years

Azar, C., Johansson, D.J.A. Valuing the non-CO $_2$ climate impacts of aviation. Climatic Change **111**, 559–579 (2012). https://doi.org/10.1007/s10584-011-0168-8

 Although emissions (kg CO₂ / RPK) have dropped by about an order of magnitude since since 1960 growth has outpaced efficiency improvement

Lee et al, 2021

Environmental targets and their feasibility

- Optimistic aircraft tech inclusion
- Very radical propulsion system
 - TRL 2 propulsion descriptions
- Perhaps possible to curb half of the growth rate

0%

Time frame	Originator	Annual improvement
2017-2037	D. Zingg (ICAO)	1.25%
2000-2050	ACARE/EU	2.3% (68% tech. target)
2000-2050	ACARE/EU	2.7% (75% target)
2000-2050	ULTIMATE project – long range	1.2% (bl) ¹ , 1.5% (r) ²
2000-2050	ULTIMATE project – short range	1.8% (bl) ¹ , 2.0% (r) ²
1980-2015	L. Dray	3.2%
2015-2050	L. Dray	1.6%

 $(bl)^1 = 2050$ baseline

 $(r)^2$ = 2050 radical tech

Opportunities for heat management

BACK TO BASICS

$$\frac{\dot{Q}}{\dot{W}} = \frac{Heat\,flow}{Pumping\,power} = \frac{\frac{\theta}{\overline{T}}}{(\gamma-1)M^2} \propto \frac{1}{M^2}$$

FEASIBLE PATHS FOR HEAT MANAGEMENT

Use of existing surfaces

ROLLS-ROYCE MODEL 501-K COMPRESSOR HALF

Source: https://frontlineaerospace.com/technologies/isocool/

Large heat transfers Intercooled recuperated engine Source: http://www.newac.eu

Kyprianidis , K, G, Rolt A. M., Grönstedt T. Multidisciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine, *J. Eng. Gas Turbines Power*. 136(1), Jan 2014

- If optimized intercooling could provide 3-5% fuel burn
 - OPR enabling
 - Use colder cooling air

Zhao, X, Tokarev, M, Hartono, E. A., Chernoray, V. and Grönstedt T., Experimental Validation of the Aerodynamic Characteristics of an Aero-Engine Intercooler, 136(1), Jan 2017, 139, (5)

Conventional fuel heat management

- Fuel additives to remove oxygen may increase max. temp by 200 K
- May remove air cooled oil coolers ۰

uel Tan

About 1% SFC benefit

Air-cooled oil cooler

TIC

Second Stage Metering Pump Lube C First Stao Centrifugal Pum Burners Aircraft/Engine Fuel Interface

Lundbladh, A., Donnerhack, S., Streifinger, H., Giuliani, F. and Grönstedt, T., "Future Innovative Cores for Commercial Engines", ISABE-2009-1277, Montreal, Canada

U.S. Patent

Dec. 1, 2015

Sheet 1 of 3

FEASIBLE PATHS FOR HYDROGEN HEAT MANAGEMENT

Diffuse Both options feasible, Reynold's analogy but direct transfer Direct transfer more attractive

Hydrogen heat management

- Heat addition to fuel could easily be 10% of fuel heat value => 10% SFC!
 - Weight penalties
 - Pressure losses
- Can we gain further improvement from engine integration?

Temperature	Pressure	Enthalpy
22 K	2.3 bar	17.84 kj/kg
700 K	40 bar	9793.5 kj/kg
1000 K	40 bar	14229 kg/kg

Entropy (kJ/kg-K)

Climate relevance of range

Exhibit 2	sions n	ersear	nent ar	nd rang	۵					Negligible	contribution
2018	Jiono p	er begi	nentai	arang	C					0-2%	5-10%
										2-5%	10-15%
	Range in k	km up to								Share of total	
PAX	500	1,000	2,000	3,000	4,500	7,000	8,500	10,000	>10.000	CO ₂ emissions	Global fleet
Commuter <19										<1%	4%
Regional 20-80										3%	13%
Short-range 81-165										24%	53%
Medium-range 166-250										43%	18%
Long-range >250										30%	12%
Total	4%	13%	25%	14%	11%	12%	7%	7%	7%		

Exploring integration experimentally

2 Stage LPC + ICD

Finalizing stage ENABLEH2 Synergies in ICD

1 Stage LPT + TRS

2017 Welds, NC, Bumps, Recuperator

H2 Turbin

Heat management test facilities

- Two annular test rigs now up and running
- Realistic-Re-number
- TRL 3-4
- Designed for detailed HEX studies

18

- High heat-transfer rate per unit area at cruise condition
- Limited wetted area

h (W/m²-K)

2193.3 2040.0 1886.7 1733.3 1580.0 1426.7 1273.3 1120.0 966.7 813.3 660.0 506.7 353.3 200.0

• Use shroud, hub and add splitter-vane

- Aggressive designs lead to flow separation
- Increased pressure loss in duct
- Penalties in compressor performance and surge margin
- Explore synergies with heat rejection

The aircraft level – ENABLEH2

AHEAD project

The more we get the longer we reach

Fuel price prediction

- Predictions are difficult, especially about the future.
- Electrolysis about 50 kWh/kg
- Liquefaction 7 kWh/kg target.
- Green hydrogen from off-shore wind 2-3 USD / kg on long-term
- Solar is going through the floor

HOW MUCH ELECTRICITY CAN WE HAVE?!

Even more for electrofuels

Liquids Natural gas Coal Nuclear 3.58

2050*

• Renewables (incl. hydroelectric) 21.66

Assuming

- 60 kWh / kg hydrogen
- 2018 fuel usage
- Same thermal efficiency
- 6.3 PWh
- ~25% of the projected green energy in 2050

Cryogenic hydrogen tanks

- ENABLEH2 study.
- Chalmers concept follows simple existing idea
- Focus innovation on propulsion system / fuel heat system
- Insulated foam tanks are low TRL
- Double walled vacuum tanks are heavy (difficult with longer ranges)
- Polyvinylchloride rigid closed cell

Rompokos, P, Rolt A, Nalianda D, Isekveren A T, Senné C, Grönstedt T., Hamidreza A., Synergistic technology combinations for future commercial aircraft using liquid hydrogen", Journal of Engineering for Gas Turbines and Power, Volume143, Issue, 7, 2021

	Jet-A (2020)	Jet-A (2050)	LH2 (2050)	LH2 versus Jet- A (rel.)	
MTOW (kg)	338,500	294,500	284,800	0.97	
OEW (kg)	167,700	152,300	194,300	1.28	
L/D	19.1 20.6		17.9	0.87	
Wetted area fuselage (m ²)	1300 1300		1970	1.52	
LH ₂ tank volume (m ³)	-	-	714	-	
LH ₂ tank weight (kg) + structures and Fairing	-	-	26,500	-	
Cruise TSFC (mg/N/s)	14.1	12.5	4.5	0.36	
Engine thrust SLS (lbf)	104,000	92,260	107,00	1.15	
T/W	0.279	0.285	0.34	1.19	
Mission Fuel (kg)	113,586	85,284	38,200	0.45	
Energy use MJ/PAX/km	0.85	0.64	0.80	1.25	
Energy use (rel. to 2020)	Datum	-28%	-11%	-	

Hydrogen aircraft: when

Guessing the future

Generations	Hydrogen fuel	Electrofuel			
2028 (N1)	Hydrogen demonstrator + new single aisle ?				
2035 (N2)	New hydrogen medium range aircraft + conventional twin aisle?	New single aisle + twin aisle?			
2045 (N3)	Next generation hydrogen propulsion / aircraft	Back to radical tech.			

CHALMERS UNIVERSITY OF TECHNOLOGY