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Mitigating aviation climate impact by climate-optimized aircraft trajectories
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Climate change and the role of ATM - Outline

« Assessment of total climate impact of aviation — CO, and non-CO,, effects

« Sensitivity of non-CO, effects when flying at alternative flight altitudes
« Concept to describe variation (spatially, temporally) of aviation non-CO, climate impacts
» Case studies on exploring mitigation potential by climate-optimized trajectories

« Towards implementation of MET services on aviation climate impact
« Towards integration of non-CO, effects in emission schemes, e.g. CORSIA

e Summary
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Aviation emission and climate impact

Combustion products - depending on operating conditions
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Overview: Climate impact of aviation

Emissions L “ .

atmospheric

composition

l x v |

Propertles

. Direct Indirect Direct
Climate
. greenhouse greenhouse aerosol Clouds
forcings
gases gases effect

‘#7 Climate change
DLR JTErl




DLR.de ¢ Folie5 >IWACCY7 > Dr. Sigrun Matthes « ATM & Environment > 20 May 2021

How important are the aviation non-CO,-effects?
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Basic relation between inbalance in radiation budget (RF) and
temperature change (dT)

dT = A * RF

— i

Radiative Forcing
Temperature change

Climate Sensitivity
Parameter
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Radiative Forcing (RF), Effective Radiative Forcing (ERF) and Temperature
change (dT)

Steady-state Climate Sensitivity
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Radiative Forcing (RF), Effective Radiative Forcing (ERF) and Temperature change (dT)
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Altitude dependence of non-CO, climate impacts

In the base case (reference), it is assumed that aircraft fly at their optimal altitude, while in the alternative altitude
scenarios Flying Higher (Lower) all aircraft are flying 2000 feet (~ 600 m) higher (lower).

In the Flying Higher scenario, only those aircraft which are able to fly higher are shifted to a higher altitude, otherwise
they remain at their reference lower flight altitude.

| 2000 feet higher
- - Base Case
~ | 2000 feet lower
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Altitude dependence of non-CO, climate impacts

If aircraft fly lower aviation climate impact of non-CO, effects - water vapour, contrails, and aviation induced
effects on warm clouds - decreases, while CO, emission and impacts increase slightly. Matthes et al. 2021
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Altitude dependence of non-CO, climate impacts Impacts
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ATMA4E Environmental-optimised trajectories

= Aviation is concerned by environmental impact of its operations, comprising air quality, noise
and climate impact. Aviation climate impact is caused by CO, and non-CO, emissions, comprising
contrails, nitrogen oxides impacting ozone and methane, water vapour, etc.
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Weatvner data and Ozone Climate—Changﬁ-Functions

Climatology of aviation
weather situations:
Winter W1-W5
Summer S1-S3
University Reading
Irvine et al. 2013

Contribution of a local
NO, emission to climate
change via ozone
formation

Clear relationship
between weather and
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Climate Change Functions (CCFs)
Weather Potential
contrail coverage

respresentive winter

weather situation, Fromming et al. 2021
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e Climate change functions characterize sensitivity of the atmosphere to aviation emissions
at specific location (position, altitude, time). = MET products for climate-optimized
trajectory planning require spatially and temporally resolved climate impact information.
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Step towards algorithmic Environmental Change Functions ECFs

From climate change function to aCCFs

= The concept of climate change functions was developed
within the European Collaborative project REACT4C
(see Volker Grewe talk yesterday)

= The key step in ATMA4E was to relate readily-available
meteorological data to these existing detailed CCFs to
allow the rapid generation of new CCFs (algorithmic CCFs)
for specific (forecast) weather situations

—> Advanced MET information

" |ntegration of environmental impact information via a
meteorological interface, e.g. to SWIM infrastructure
(format, architecture) to make it available during flight
planning.

-

Fromming et al., 2020
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Air traffic management for environment:
SESAR/H2020-Project ATMA4E
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Step towards algorithmic Enwronmental
Change Functions aECFs
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Identified research needs in ATMA4E on
Environmental Change functions

1. Enhancing the technological readiness of the algorithmic environmental change
functions (aECF): these need to cover all aircraft starting and landing in European airspace
and represent uncertainties

2. Expand the aECF concept from a case-study approach to a full European-scale
application including performance indicators: this would also need to consider expanding
the aECFs (e.g. for air quality, other pollutants; for noise, the impact of airframe; for climate,
additional non-CO, effects)

3. Expand the aECF concept to include a robustness measure to minimize the risk of wrong
decisions: this would need to account for uncertainties in weather forecasts, environmental
Impacts, and exact routing knowledge

ATM

SESAR Joint Undertaking under grant agreem % —
’s Horizon 2020 research and innovation pi ol
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Step towards robustness of climate-optimized trajectories
Using algorithmic Environmental Change Functions ECFs (MET service)

* Providing a technical description of algorithmic climate change functions aCCFs
which represent spatially and temporally resolved climate impact of aviation
emission to quantify CO, and non-CO, effects, comprising NO, and contrail-cirrus.
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*
FlyATMAE: Flying ATM for Environment (2020-2022) SESAR
Project Objective

* FlyATM4E will develop a concept to which enable a robust and
eco-efficient reduction in aviation’s climate impact.

* FIyATMAE will and aircraft trajectories, which lead to a robust climate
impact reduction despite uncertainties in atmospheric science that can be characterised by ensemble
probabilistic forecasts. This will improve the assessment of aviation’s climate impact.

« It will further identify those situations where there is a with only
little or even no cost changes (“Cherry-Picking”) and those situations where both, climate impact and costs
can be reduced (“Win-Win”).

METEOROLOGY &

UNCERTAINTY ROBUST SOLUTIONS S‘:VT'L';‘Q"I’LNN‘S
* As a summary, FlyATMA4E will formulate swis a0 die b ‘b \ )
. . o sty e 5 e oy s el
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. . . €| 20, = P 2t meteo mem) H \ £ CHERRY-PICKING
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eco-efficient routing. .. Sl -
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Towards implementation of climate optimized trajectories

* Implementation relies on provision of climate change functions to ATM (trajectory optimisation)
 Feasibility study performed on infrastructure comprising MET components — roadmap definition

* Options on how to integrate such novel MET
products have been studied, e.g. ATM4E,
SESAR ATMA4E, PJ18

 Further options on how to expand current ATM —
and how to identify overall mitigation Forecect e e MBS
potential by climate-optimized trajectories EREES o e
are currently explored, e.g. SESAR
FIYATM4E, ALARM, but also in Aeronautics g | (g | ( covData |
projects CllmOP . planning ) N execution . L recording .
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Towards integration of non-CO, effects in emission schemes
Need for market-based / policy measures for integrating non-CO, effects of aviation into EU ETS and

under CORSIA _ _ .
* From research on climate impact of aviation,
Integration based on CO, equivalents (CO2e) e.g. IPCC (EASA) with current level of
confidence in climate impact estimates we
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2 c constant L -odgesta . 04 y
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’
Ongoing research projects on sustainable aviation <@ ECATS
Focussing on topics related to ATM

*  FlyATMAE investigates robustness criteria of climate-optimized aircraft trajectories and synoptical situations with large mitigation potential

» Assessment strategies: Win-win situations and Cherry picking in the European Air Space

» SESAR Exploratory Research Project, 06/2020-11/2022, coordinated by DLR Institute of Atmospheric Physics ATM
*  ALARM will to develop a prototype on global multi-hazard monitoring and Early Warning System (EWS).
» Early warnings on volcanic ash, dust, severe weather, space weather as well as hot spots in terms of climate impact provided (nowcast, forecast) 2L
» SESAR Exploratory Research Project, 06/2020-11/2022, U3CM, DLR, BIRA, Satavia, UniPad, SymOpt ﬁ’ﬁi‘]p!ﬂARM

*  DYNCAT will explore more environmentally friendly and more predictable flight profiles in the terminal manoeuvring area, or TMA. It will support
pilots in their configuration management during approach.

» DYNCAT will have available data (real-world, simulation)

» SESAR Exploratory Research Project, 07/2020-12/2022, coordinated by DLR Institute of Flight Systems

» Contrail avoiding trajectories planning and satellite verification for night time traffic
» Exercise to avoid night-time contrails over Europe, 01/2021-12/2023, DLR Institute of Atmospheric Physics, DWD, MUAC

*  ACACIA improves scientific understanding on mechanisms and processes causing aviation climate impact and provides an updated climate impact

assessment
ACACIA

» Investigate non-CO, climate impacts of aviation comprising indirect aerosol cloud interaction
» Aeronautics Project (RIA), 01/2020-06/2023 coordinated by DLR Institute of Atmospheric Physics

*  ClimOP assesses strategies for operational improvements in order to reduce climate impact of aviation comprising CO, and non-CO, impacts
» Most promising mitigation strategies are identified and their mitigation potential assessed
> Aeronautics Project (RIA), 01/2020-06/2023, DeepBlue, DLR, NLR, TU Delft et al. LIM®P

é 4
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Climate change and the role of ATM - Summary

Total climate impact of aviation is caused by CO, and non-CO,, effects, with aviation contributing to
anthropgenic climate change by 2.5% (only CO,) and about 5 % (considering non-CO,, effects as well).

* Non-CO, effects show a strong spatially and temporally variation which can be exploited by alternative
trajectories (climate-optimized) in order to reduce climate impact of aviation.

 Climate change functions are a concept to describe these non-CO, climate impacts, and algorithms are
currently under development which enable an direct linkage to weather forecast data.

» Using such novel MET services (prototypes) enables exploring by climate-optimized
trajectories, e.g. in European traffic case study.

« Towards implementation of such novel MET services on aviation climate impact requires an expanded

infrastructure, as well as concepts on (robustnest).
« Conceptual work on how to best integrate non-CO,, effects in current emission schemes, e.g. CORSIA are
delivering initial concepts with different levels of and (Stakeholder dialogue).

« Strategic partnership between climate impacts research and air traffic management helps efficient integration
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