Electrification for Aircraft Propulsion: Modeling and Potential Benefits

7th International Workshop on Aviation and Climate Change University of Toronto Institute for Aerospace Studies May 19–21, 2021

Alejandra Uranga

Gabilan Assistant Professor University of Southern California

Aerodynamic Design&Research Laboratory

School of Engineering Department of Aerospace and Mechanical Engineering

Acknowledgments

USC PhD students

Saakar Byahut Michael Kruger

NASA LEARN3 Project 2016-2018

NASA/MIT Collaborative Agreement NNX16AK25A PI: E. Greitzer (MIT) Participating organizations: MIT USC

Aurora Flight Sciences (now a Boeing Company)

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Summary

- Propulsion system electrification may help reduce aviation's emissions
- Electrification is synergistic with distributed propulsion (DP) and boundary layer ingestion (BLI)
- Improvements in battery technology are crucial to making electrification viable and beneficial (other electrical component tech already sufficient)
- Each electrified propulsion architecture has its sweet spot
 - Fully electric aircraft best for short ranges and small payloads
 - Turbo-electric seems better suited for high ranges
 - Hybrid-electric has niche at intermediate ranges

Electrification can reduce on-board energy requirements

Introduction

lethodology

Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Outline

1 Introduction

- 2 Methodology
- **3** Cruise-Only Approximation with Low-Fidelity Models
- **4** Full-Mission Commuter Results
- **5** Lessons Learned from Modeling Fidelities
- 6 Open Questions

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modelinj

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Demand for Air Transportation

- Aviation represents $\sim 3\%$ of global emissions
- Heavily reliant on fossil fuels

A. Uranga (USC)

• Air transportation projected to grow 4-5% annually for next 20 years

doubles every 15 years FAA, Airbus, Boeing

Image source: Airbus Current Market Forecast 2019

Introduction

Unified Propulsion System Model LUCAS Framework Technology Component Modelin,

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Controlling Emissions from Aviation Requires Radical Changes

2010 ICAO Assembly Commitments

Source: "The Right Flightpath to Reduce Aviation Emissions", position paper, Air Transportation Action Group, UNFCCC Climate Talks, Cancun, Mexico, 2010

A. Uranga (USC)

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Candidate Technology: Propulsion System Electrification

Aircraft electrification

(= use electrical components as major elements in propulsion system) can help reduce emissions from aviation

- ► Alleviate dependence on fossil fuels: batteries carry electrical energy
- Electricity production from variety of sources (some low-emissions)
- Leverage high efficiency levels of electrical components
- Can facilitate use of beneficial technologies: distributed propulsion (DP) and boundary layer ingestion (BLI)

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modelin

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Electrification Benefit: Higher Conversion Efficiency

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modelin,

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Image source: Hepperle 2012

A. Uranga (USC)

Electrification Benefit: Distributed Propulsion (DP)

DP provides potential weight reduction or larger fan area (cube-squared scaling: $m_{
m prop}\sim \dot{m}_{
m prop}^{3/2}$)

Assumption: Electrification facilitates DP

Kruger et al., AIAA 2018-4227, AIAA Aviation Forum 2018

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

8 / 47

A. Uranga (USC)

Electrification Benefit: Boundary Layer Ingestion (BLI)

BLI reduces wasted kinetic energy in combined wake+jet \Rightarrow Lower power requirement for a given forward force

Assumption: Electrification facilitates BLI

Uranga et al., AIAA Journal 2017

A. Uranga (USC)

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modelinį

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Electrification Challenges

The weight of energy

▶ Battery specific energy is ~2 orders of magnitude lower than hydrocarbon fuel $e_{\text{fuel}} \simeq 12\,000\,\text{W}\cdot\text{h/kg}$ versus $e_{\text{bat}} \simeq 175-250\,\text{W}\cdot\text{h/kgtoday}$

Aircraft re-design needed

Electrified propulsion not beneficial if just swapped in place of conventional systems

Nascent technologies

- Low TRLs not "aerospace-ready"
- Operational and safety challenges
- Well-to-wake analysis may not yield emissions benefit for electrified aircraft, but trends are promising and electicity generation is becoming greener (oil is not)

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Terminology

- Conventional: propulsion achieved with hydrocarbon fuel as sole energy source and mechanically-driven fans
- ► Turbo-electric: powered only from gas turbines burning fuel
 - Fully turbo-electric: all fans electrically driven
 - ▶ Partial turbo-electric: fans both electrically- and mechanically-driven
- Hybrid-electric: propulsion energy comes from both fuel via gas turbines and a battery
- ► All-electric: all propulsion energy provided by a battery
- $\frac{\text{Electrified}}{\text{(electric motors, maybe batteries, ...)}}$

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Performance Metric: On-Board Energy Usage

On-board energy required to bring passengers from point A to point B

Mission energy: Productivity-Specific Energy Consumption

$$PSEC = \frac{\text{[total on-board energy]}}{\text{[payload mass]} \times \text{[range]}} = \frac{E_{tot}}{m_{PL} \times R} \quad \text{[kJ/kg·km]}$$

where on-board energy
$$E_{tot} = \underbrace{m_{fuel} \ e_{fuel}}_{fuel \ energy} + \underbrace{m_{bat} \ BSE}_{battery \ energy}$$

Considerations related to production of electrical energy to charge batteries on the ground and corresponding chain for kerosene fuel delivery are outside the scope

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Outline

1 Introduction

2 Methodology

- Unified Propulsion System Model
- LUCAS Framework
- Technology Scenarios
- Modeling of Electrical Components

3 Cruise-Only Approximation with Low-Fidelity Models

- 4 Full-Mission Commuter Results
- **5** Lessons Learned from Modeling Fidelities
- 6 Open Questions

Introduction

Methodology

Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Electrified Propulsion System Architectures

Many flavors...

Image source: NAE report 2016

Introduction

Methodology

Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Unified Propulsion System Model

Introduction

Methodology Unified Propulsion System Model

LUCAS Framework Technology

Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

A. Uranga (USC)

Unified Propulsion System Model: Electrification Metrics

Level of electrification defined based on propulsion-system power splits

At the source: Power supplied by gas turbine(s) (mechanical source) and/or battery (electrical source)

Source electrification factor $f_S \equiv \frac{P_{\text{bat}}}{P_{\text{bat}} + P_{\text{turb}}}$

At the load: Flow power delivered via mechanically-driven propulsors and/or electrically-driven props.

Load electrification factor
$$f_L \equiv \frac{P_{K_E}}{P_{K_E} + P_{K_M}}$$

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Outline

1 Introduction

2 Methodology

- Unified Propulsion System Model
 LUCAS Framework
- Technology ScenariosModeling of Electrical Components
- 3 Cruise-Only Approximation with Low-Fidelity Models
- 4 Full-Mission Commuter Results
- **5** Lessons Learned from Modeling Fidelities
- 6 Open Questions

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modelinj

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Methodology: LUCAS Framework

LUCAS : Library for Unified Conceptual Aircraft Synthesis

- General framework for analysis and design of conventional and novel aircraft
- Power-balance approach for aero-propulsive performance estimation
- Unified propulsion system model
- Models for wide variety of aircraft configurations, propulsion system architectures technologies (DP, BLI)
- Relies on SUAVE (mission analysis, aerodynamics, weights) and pyOptSparse for optimization

SUAVE references: Lukaczyk et al. AIAA 2015-3087, 2015; Botero et al. AIAA 2016-1275, 2016

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Outline

1 Introduction

2 Methodology

Unified Propulsion System ModelLUCAS Framework

Technology ScenariosModeling of Electrical Components

3 Cruise-Only Approximation with Low-Fidelity Models

- 4 Full-Mission Commuter Results
- **5** Lessons Learned from Modeling Fidelities
- 6 Open Questions

Introduction

Methodology Unified Propulsion System Model LUCAS Framework

Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Battery Specific Energy

Theoretical and cell-level BSE

- Cell-level BSE is too often quoted in literature and sales pitches
- Specific energy at pack level is the relevant parameter for aircraft-level performance

 $\textit{BSE}_{\rm pack}\approx 0.2\,\textit{BSE}_{\rm th}$

ntroduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modelinj

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Electric Component Technology Trends

Introduction

Unified Propulsion System Model LUCAS Framework Technology Component Modelin

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

A. Uranga (USC)

Technology Scenarios

		Current	Conser- vative 2035	Interme- diate 2035	Optimistic 2035
Battery specific energy (pack)	[W·h/kg]	175	250*	575	900**
Battery specific power	[kW/kg]	0.52	0.745	1.7	2.7
Electrical machines s.p.	[kW/kg]	2	9	12	16
Power electronics s.p.	[kW/kg]	2.3	9	14	19
Thermal management syst. s.p.	[kW/kg]	13.2	13.2	13.2	13.2
Electrical component efficiencies	[-]	0.95	0.98	0.99	0.99

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modelin

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

 $s.p.\,= {\sf specific \ power}$

* Current Li-ion chemistries

** Novel Li-ion (Li-S or Li-air) chemistries

A. Uranga (USC)

ADRI

Outline

1 Introduction

2 Methodology

- Unified Propulsion System Model
- LUCAS Framework
- Technology Scenarios
- Modeling of Electrical Components
- **3** Cruise-Only Approximation with Low-Fidelity Models
- 4 Full-Mission Commuter Results
- **5** Lessons Learned from Modeling Fidelities
- 6 Open Questions

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Electric Propulsion System Components

$\begin{array}{c} \hline \\ Battery \\ \hline \\ Battery \\ \hline \\ \hline \\ \eta_{conv} \\ \hline \\ \eta_{mot} \\ \hline \\ Specific Energy, \\ Specific Power \\ \end{array}$					
Component	Low Fidelity	Higher Fidelity			
Battery	Energy, power, mass	Capacity, discharge behavior			
	\Rightarrow specific energy/power	(current, voltage, power)			
Motor	Power, mass, efficiency	Angular speed, voltage, current,			
	\Rightarrow specific power	physical dimensions, magnetic properties			
Power Distribution	Lumped	Safe operating voltages			
Converter	Power, mass, efficiency	Switching topologies, resistances,			
	\Rightarrow specific power	voltage, current			
Wiring	Lumped	Length, cross-sectional area			
		voltage, current, efficiency			
Thermal management	Energy flow rate, mass	Temperature, heat exchanger			
system (TMS)	\Rightarrow specific power	(density, thermal properties)			

Component masses calculated based on specific energy/power

Introduction

Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

24 / 47

A. Uranga (USC)

Battery Model

Capture non-linear battery discharge dynamics under variable power loads

Constant current model

$$V = V_0 - KQ - RI - GIQ$$

- Calculate V_0 , K, R, G from curves
- But flight segments discharge at (piecewise) constant power \Rightarrow constant-power model (P = IV)

$$V = V_0 - KQ - RP/V - GQP/V$$

$$V = V_n - \tilde{K} (Q - Q_n)$$

$$\tilde{K} = \frac{K + GP/V_n}{1 - RP/V_n^2 - GPQ_n/V_n^2}$$

$$V_n = \frac{1}{2} \left[(V_0 - KQ_n) + \sqrt{(V_0 - KQ_n)^2 - 4(RP + GPQ_n)} \right]$$

Energy (dE = V dQ): area under the V vs. Q line • Use initial & final points: $(Q_i, V_i) \& (Q_f, V_f)$ $\Delta E = \left[V_n - \tilde{K} \left(\frac{Q_i + Q_f}{2} - Q_n \right) \right] (Q_f - Q_i)$

Component Modeling

Motor Model: Switched-Reluctance Motor

Model changes in efficiency at different power levels in various flight segments

• Represent magnetic flux ϕ paths as a network of reluctances R and magnetomotive forces F

- ▶ Use total flux to calculate motor inductance $L (\Rightarrow \text{ average torque } \mathscr{T}_{avg})$
- Output power: $P_{\text{out,mot}} = \mathscr{T}_{\text{avg}} \omega_{\text{mot}}$
- Copper losses due to resistance of the stator winding wire: $P_{Cu} = I^2 R_{coil}$
- Core losses due to hysteresis, eddy-current, excess losses

$${\it P}_{\rm core}\ =\ \sum \mathscr{P}_{\rm k}\ m_{\rm k}\ =\ \sum \left(\mathscr{P}_{\rm hys,k} + \mathscr{P}_{\rm eddy,k} + \mathscr{P}_{\rm exs,k} \right) \rho_{\rm k} \mathscr{V}_{\rm k}$$

- Motor input power: $P_{\text{mot,in}} = P_{\text{mot,out}} + P_{\text{Cu}} + P_{\text{core}}$
- Motor efficiency: $\eta_{mot} = P_{mot,out}/P_{mot,in}$

Introduction

lethodology

Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

A. Uranga (USC)

Converter Model

Model changes in efficiency at different power levels in various flight segments (Can be replaced with low-fidelity model with minimal loss in accuracy)

▶ Use equivalent circuit model to find relationship between input and output voltage (⇒ power)

$$V_{\rm conv,out} \ = \ \frac{1}{k_{\rm d}'} \left(V_{\rm conv,in} - k_{\rm d}' V_{\rm D} \right) \left[\frac{k_{\rm d}'^2 R_{\rm load}}{k_{\rm d}'^2 R_{\rm load} + R_{\rm L} + k_{\rm d} R_{\rm on} + k_{\rm d}' R_{\rm D}} \right]$$

- Duty cycle: $k'_{d} = 1 k_{d}$
- ▶ Input and output power: $P_{\text{conv,in}} = V_{\text{conv,in}} I$, $P_{\text{conv,out}} = V_{\text{conv,out}} k'_d I$
- Efficiency $\eta_{\text{conv}} = \frac{P_{\text{conv,out}}}{P_{\text{conv,in}}}$

Introduction

Methodology Unified Propulsion System Model LUCAS Framework

Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Power Distribution and Paschen's Law

Set a safe operating voltage based on physical limits

 Breakdown voltage: voltage required to create discharge or electric arc between electrodes

$$V_{\rm bd} = \frac{B \, pd}{\ln \left[\frac{A \, pd}{\ln \left(1 + \frac{1}{\gamma}\right)}\right]}$$

- Absolute worst case for air: V_{bd} = 327 V at pd = 0.760 Pa.m
- Current aircraft voltages fall below this
- For insulated conductors
 - Fraction of voltage across air gap: $f_V = \frac{d}{d + \frac{t_i}{\varepsilon_r}}$
 - Safe operating voltage: SOV = $\frac{V_{bd}}{f_{1/2}}$
- SOV can be much higher than breakdown voltages both at ground-level and at cruise

Introduction

Unified Propulsion System Model LUCAS Framework Technology Component Modeling

ruise-Only opproximation

Full-Mission Commuter

Modeling Lessons

Cables and Wiring

Determine if wiring mass is important in propulsion system modeling \Rightarrow Wiring mass not significant with distributed propulsion

- Wires supply power to the motors: $P_{\text{mot,in}} = IV = I \cdot \text{SOV}$
- Select diameters from American Wire Gauge (AWG) based on current needed
- Cable resistance: $R_{\text{cable}} = \frac{L_{\text{cable}}}{\sigma A_{\text{cond}}}$
- Cable length calculated from aircraft geometry
- Power dissipated in the cable: $P_{\text{cable}} = I^2 R_{\text{cable}}$ • Wiring mass: mass of conductors + insulation

$$m_{
m wiring} = 1.2\,\left(\,rac{\pi}{4}\,
ho_{
m cond}\,D_{
m cond}^2\,L_{
m cable}~+~rac{\pi}{4}\,
ho_{
m ins}\left[(2\,t_i+D_{
m cond})^2-D_{
m cond}^2
ight]\,L_{
m cable}$$

▶ Factor of 1.2 for mass of fixing components (clamps, mounts, ...)

Introduction

Methodology Unified Propulsion System Model

EUCAS Framewo

Technology

Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Thermal Management System (TMS)

Size heat exchanger to reject wasted heat from electrical components

- Energy wasted from electrical components: $\dot{Q}_{comp} = (1 - \eta_{comp}) P_{comp,in}$
- Total heat to be rejected: $\dot{Q} = \sum_{i} \dot{Q}_{\text{comp},i}$
- TMS: heat exchanger with hot side and cold side
- Modeled with number of thermal units (NTU) approach

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

A. Uranga (USC)

Outline

1 Introduction

2 Methodology

- Unified Propulsion System Model
- LUCAS Framework
- Technology Scenarios
- Modeling of Electrical Components

3 Cruise-Only Approximation with Low-Fidelity Models

- 4 Full-Mission Commuter Results
- 5 Lessons Learned from Modeling Fidelities

6 Open Questions

Introduction

Methodology Unified Propulsion System Model LUCAS Framework

Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Low-Fidelity Framework Overview

- Generalized range equation for cruise-only mission
- Energy- and power-to-mass scalings for propulsion system components
- Structural sizing based on correlations

GPKit: Burnell, Damen, and Hoburg, "GPkit: A Human-Centered Approach to Convex Optimization in Engineering Design", 2020 CHI Conference on Human Factors in Computing Systems

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

32 / 47

A. Uranga (USC)

Mission Determines Optimal Architecture

- All-electric best for very short ranges (~ 200 nmi)
- Turbo-electric seems best for long ranges (>400 nmi)
 - ... but higher-fidelity results may show otherwise
- Hybrid-electric may have a niche at intermediate ranges, e.g. to extend range of otherwise all-electric option
- All-electric for thin-haul missions is unfeasible with current and conservative 2035 tech

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Range Limitations of All-Electric Architectures

All-electric optimistic 2035 Tech

- Large sensitivity to range
- All-electric could give large benefits at low ranges, but advantage quickly drops with range due to battery mass growth

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modelinj

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Electrification Benefits: Technology Effects

All-electric 100 nmi mission

- BSE improvements crucial to making all-electric feasible
- Diminishing returns past 900 W·h/kg BSE
- Component powers less limiting than BSE with diminishing returns past 5 kW/kg
- DP beneficial, but diminishing returns past ~6-8 propulsors
- DP and BLI facilitate electrification: larger missions become feasible

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Outline

1 Introduction

2 Methodology

- Unified Propulsion System Model
- LUCAS Framework
- Technology Scenarios
- Modeling of Electrical Components
- **3** Cruise-Only Approximation with Low-Fidelity Models
- 4 Full-Mission Commuter Results
- 5 Lessons Learned from Modeling Fidelities
- 6 Open Questions

Introduction

Iethodology Jnified Propulsion

LUCAS Framework Technology

Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Commuter Aircraft Mission: 19 Pax, 250nmi range

Baseline for comparisons: advanced* technology version of DHC-6 Twin Otter

* (-15% empty mass; -20% in engine SFC and power-to-mass ratio)

Number of passengers	$N_{\rm pax}$	19	
Payload	m _{pay}	1842 kg (3979 lb)	
Mission range	R	250 nmi (463 km)	
Cruise speed	$V_{\rm cruise}$	94 m/s	
Takeoff mass	<i>m</i> init	5670 kg	
Cruise altitude	h _{cruise}	10000ft (3050m)	

Image ©Viking Air

Introduction

Methodology

Unified Propulsion System Model LUCAS Framework Technology Component Modelinį

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

A. Uranga (USC)

Electrification Design Space - Optimistic Tech Assumptions

- Energy requirement drops quickly as source electrification (f_s) increases (more energy in battery vs fuel)
- Parallel hybrids slightly more efficient than series hybrids
- Aircraft weight grows rapidly as electrification increases

Full-Mission Commuter

Modeling Lessons

Open Questions

A. Uranga (USC)

Hybrid-Electric: 500 nmi Extended Range Mission

Mission-fixed hybrid: Constant electrification throughout mission.

Mission-varying hybrid: Different electrification levels for different mission segments.

Configuration	Tech	Climb <i>f_s</i>	Cruise f _s	$\Delta M_{\tau o}$	ΔPSEC
Fixed hybrid	Interm.	0.55	0.55	+59%	-27%
	Opt.	0.9	0.9	+52%	-63%
Varying hybrid	Opt.	1	0	+15%	-3.7%

Potential energy benefits even at intermediate technology

- Fixed hybrid leads to largest energy benefits, but with large weight gains
- ► Varying hybrids mitigate weight gains at the expense of energy benefits

Introduction

1ethodology

Unified Propulsion System Model LUCAS Framework Technology Component Modelinį

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Conclusions of Full Mission Commuter Study

All-electrics are fundamentally range limited and best suited for very short missions while hybrids can be more versatile

If battery specific energy improves to intermediate tech levels (BSE \sim 600 W·h/kg)

- All-electric architectures could lead to large energy reductions for very short range missions (100 nmi) but with big aircraft weight gains
- Hybrid-electric architectures
 - Give large energy reductions with high electrification levels
 - Can significantly increasing feasible mission range compared to all-electrics
 - Keep aircraft weight gains relatively low

Electrification benefits are primarily due to high efficiency of electrical components \Rightarrow higher electrification is more beneficial at the expense of weight gains

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Outline

1 Introduction

2 Methodology

- Unified Propulsion System Model
- LUCAS Framework
- Technology Scenarios
- Modeling of Electrical Components
- **3** Cruise-Only Approximation with Low-Fidelity Models
- 4 Full-Mission Commuter Results
- **5** Lessons Learned from Modeling Fidelities

6 Open Questions

Introduction

lethodology

Unified Propulsion System Model LUCAS Framework Technology Component Modelinj

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Fidelity Levels

- ► Level 1: Range equation
 - One-liner, hand calculations
 - Order of magnitude checks with minimal info
- ► Level 2: Cruise-only with low-fidelity models (specific powers and efficiencies)
 - ▶ Need to determine appropriate 'full-mission average' values a priori
 - Missing sizing effects (since components not always sized for cruise)
- ▶ Level 3: All mission segments with low-fidelity models
 - Realistic sizing and constraints
 - No need to define 'mission average' values
 - Relies on a priori values for component characteristics
- ▶ Level 4: All mission segments and detailed component models
 - No need to guess component characteristics
 - Reduces uncertainty in final answers
 - Helps ensure resulting aircraft are realistic

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Modeling Lessons

Higher-fidelity mission analysis (Level 3) is needed
for proper sizing (i.e. components meet the full mission requirements)
... otherwise propulsion system size may be underestimated
... snow-balls into significantly undersized airplane
... and conclusions on feasibility and benefits may be way off

Higher-fidelity component models teach us that

- Battery dominates propulsion system mass for all electrics (\sim 60%)
- Higher safe operating voltages may be possible than currently certified
- Non-battery component efficiencies matter mostly as they affect battery mass

Introduction

1ethodology

Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Outline

1 Introduction

2 Methodology

- Unified Propulsion System Model
- LUCAS Framework
- Technology Scenarios
- Modeling of Electrical Components
- Cruise-Only Approximation with Low-Fidelity Models
- 4 Full-Mission Commuter Results
- 5 Lessons Learned from Modeling Fidelities

6 Open Questions

Introduction

lethodology

System Model LUCAS Framework Technology

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Aircraft electrification can definitely reduce **on-board energy** requirements but whether it is **environmentally beneficial** or not ultimately depends on

- Electricity production and distribution: strongly dependent on how/where e.g. electric flight from Seattle to Indianapolis may be green, but return flight might pollute more than on conventional aircraft
- Environmental impact of battery and other electronics production, disposal
- ▶ Battery life-cycle considerations e.g. replace every 100 versus 1000 flights

… etc …

Analysis of broader life-cycle emissions impact is crucial and ultimately needs to be entered into the design equation

(well-to-wake emissions modeling in progress)

Introduction

/lethodology

Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Downloads available from the ADRL's site at https://adrl.usc.edu/publications/

- M. Kruger, S. Byahut, A. Uranga, J. Gonzalez, D.K. Hall, and A. Dowdle, "Electrified Aircraft Trade-Space Exploration", AIAA 2018-4227, 2018 AIAA Aviation, Atlanta, GA, June 25–29. 2018. doi: 10.2514/6.2018-4227
 [low-fideity trade-space exploration]
- S. Byahut and A. Uranga "Propulsion Powertrain Component Modeling for an All-Electric Aircraft Mission", AIAA 2020-0015, AIAA SciTech, Orlando, FL, Jan. 6–10. 2020 doi: 10.2514/6.2020-0015
 [component modeling part 1]
- M. Kruger and A. Uranga "The Feasibility of Electric Propulsion for Commuter Aircraft", AIAA 2020-1499, AIAA Scitech, Orlando, FL, Jan. 6–10. 2020 doi: 10.2514/6.2020-1499 [commuter study]
- S. Byahut and A. Uranga "Power Distribution and Thermal Management Modeling for Electrified Aircraft", AIAA 2020-3578, AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Virtual Event, Aug. 26–28. 2020. doi: 10.2514/6.2020-3578 [component modeling part 2]

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology Component Modeling

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

Contact

Alejandra Uranga, Ph.D.

Gabilan Assistant Professor Aerospace & Mechanical Engineering Dept. University of Southern California

Email: auranga@usc.edu Phone: (213) 821 - 0846 Web: uranga.usc.edu

Lab site: adrl.usc.edu

Introduction

Methodology Unified Propulsion System Model LUCAS Framework Technology

Cruise-Only Approximation

Full-Mission Commuter

Modeling Lessons

Open Questions

