

<u>Sustainable Aviation Fuels</u> Shell's Activities

University of Toronto Institute for Aerospace Studies May 19, 2021

Griffin Valentich

Aviation Fuels Engineer

- Who is Shell Aviation?
- A history of innovation
- Sustainable Aviation Fuels
 - IH² CPK-0
 - PTL Fuel
 - Other Collaborations
- Summary

Aviation Technology R&D Group – Based in Houston, Texas

Shell Technology Center Houston

- > 2,000 employees
- > 1 million sq.ft. (93,000 m²) labs & offices
- Upstream & Downstream technologies

Aviation Technology Team

Sustainability Of Aviation

815 MILLION TONNES of carbon emitted by worldwide flights in 2016

Source: IATA

Aviation responsible for **2%** of human-induced carbon emissions

Source: ATAG

Aviation responsible for

12%

of carbon emissions from transport sources Source: ATAG Passenger numbers expected to reach

7.8 BILLION BY 2036

Source: IATA

Carbon Neutral Growth from 2020

Shell's aviation vision on carbon management solutions we must deploy measures in all 3 areas to support sector de-carbonisation

Shell's role

Shell has a unique advantage though our technology and the multiple roles that we play.

We feel this puts us in a unique position to enable collaboration.

Supply Chain & Logistics

Technology Developer

Fuel Producer

4

1

2

3

Investor

Off-taker

6

5

Product Quality & Assurance

7

Fuel User – we also travel

Different technology routes to SAF

7 conversion pathways (annexes) that are certified by ASTM within D7566, all 'drop-in' blends to re-certify as Jet A (ASTM-D1655)

Technology	Code	Feedstock	1 st or 2 nd aen	Max blend	Technology		
					Providers		
Fischer-Tropsch	FT	Biomass/Waste/Nat Gas	2 nd	50%	Fulcrum, Velocys, Shell		
Hydro processed Ester and Fatty Acids	HEFA	Oils, Fats & Greases (Used cooking oil)] st	50%	UOP, Neste		
Synthesized iso-paraffins	SIP	Sugars] st	10%	Amyris		
FT Synthesized Paraffinic Kerosene plus aromatics	SPK/A	Biomass/Waste/Coal	2 nd	50%	Sasol		
Alcohol to Jet	ATJ	Biomass/Waste/Sugar	2 nd	50%	Gevo, LanzaJet		
Catalytic-HTR Hydrothermal Reactor; Supercritica Water	al CHJ	Oils and Fats	2 nd	50 %	ARA		
Hydro processed Ester and Fatty Acids	HC-HEFA	Algae	2 nd	10%	IHI		
Potential future pathways (2020-2022 certification timeframe if not longer)							
Technology	Code	Feedstock	1 st or 2 nd gen	Max blend	Technology Providers		

					Providers
Hydropyrolysis and Hydroconversion	CPK	Woody Biomass	2 nd	tbc	Shell
Hydrotreated Renewable Diesel	HEFA+	Oil and Fats] st	Est. 10%	Neste, UOP

Today, HVO/HEFA is the most commercially viable option, but Shell is working all the technology classes

Levelized cost of production USD/ton

Estimates for indication only

Currently Active

ASTM Approval Process Landscape

What is IH² Technology?

- IH² = Integrated Hydropyrolysis and Hydroconversion
- Continuous catalytic thermochemical process composed of hydropyrolysis and hydrotreating steps to produce jet, diesel and gasoline fuels from various non-food biomass-type feedstocks.
- Different mixtures and varieties of hard, and soft wood (including bark), agricultural residues such as mulberry sticks, jatropha trimmings, castor stalks, cotton stalks, bagasse, cane tops/ trash, corn stover, and municipal solid waste (MSW) samples from North America, EU and India have been processed at a bench-scale through IH2® technology.

Fuel Molecules without O (Total Liquid Product (TLP))

2 Modes of Operation: On Road and Off Road

Road fuels mode

GASOLINE / PETROL

Aviation / Marine fuels mode

Cycloparaffinic Kerosene (CPK-0) Composition: GC x GC

Carbon Number	Aromatics	Di- Aromatics	Cyclo- Aromatics	lso paraffins	Normal Paraffins	Cyclo- paraffins	Di-Cyclo Paraffins	Tri-Cyclo Paraffins
6						0.04		
7					0.02	0.49		
8				0.12	0.73	7.38	0.14	
9				0.31	0.59	16.26	4.07	
10				0.23	0.33	9.32	7.41	
11				0.19	0.24	6.63	9.64	
12	0.01			0.15	0.17	3.11	7.29	0.64
13				0.14	0.11	1.87	5.32	2.18
14				0.10	0.09	1.08	3.44	3.02
15	0.01		0.02	0.12	0.16	0.68	2.40	2.11
16	0.01			0.21	0.08	0.25	0.59	0.24
17				0.12	0.02		0.02	
18								
19								
20								
Total	0.03	0.00	0.02	1.68	2.55	47.11	40.33	8.20

D7566 Table 1 Specification Properties

Properties	Unit	Test Method	D7566	Jet A	50:50	CPK-0
Acidity, total	mg KOH/ g	D3242	0.10 Max	0.01	0.000	0.000
Aromatics	vol%	D6379	26.5 Max	16.4	8.0	<0.2
Sulfur, mercaptan	mass%	D3227	0.003 Max	0.001	0.000	0.000
Sulfur, total	mass%	D2622	0.30 Max	0.0376	0.0188	0.0014
10 % recovered	°C	D86	205 Max	155	168	161
50 % recovered	°C	D86	Report	205	198	190
90 % recovered	°C	D86	Report	244	246	249
FBP	°C	D86	300 Max	271	270	271
Residue	%	D86	1.5 Max	1.4	1.3	1.2
Loss	%	D86	1.5 Max	0.5	0.4	0.5
Flash point	°C	D56	38 Min	48	42	40
Density (at 15 °C)	kg/m3	D4052	775-840	803	818	832
Freezing Point	С	D5972	-40 Jet A / -47 Jet A-1	-51	-62	-61
Viscosity at -20 °C	mm2/s	D7945	8.0 Max	4.6	4.4	4.6
Net heat of combustion	MJ/kg	D4809	42.8 Min	43.1	43.1	43.1
Hydrogen Content	vol %	D7171	-	14.2	14.0	14.1
Smoke point	mm	D1322	25 Min	26	26	28

Properties	Unit	Test Method	D7566	Jet A	50:50	CPK-0
Copper Strip 2 h at 100 °C	-	D130	No. 1 Max	1a	1a	1b
Thermal Oxidation Stability Test Temp	°C	D3241	260 Min	260	260	325
JFTOT Pressure Drop	mm Hg	D3241	25 Max	0	0	0
Tube Rating	nm over 2.5 mm ²	D3241	85 Max	9	11	7
Existent gum	mg/10 OmL	D381	7 Max	<1	<1	<1
Microseparometer Rating w/o SDA	-	D3948	85 Min	92	91	95
Aromatics	vol%	D6379	8.4 Min	16.4	8.0	<0.2
T50 – T10	°C	D86	15 Min	50	30	29
T90 – T10	°C	D86	40 Min	89	78	88
Lubricity	mm	D5001	0.85 Max	0.61	0.61	0.80
Viscosity at -40 °C	mm²/s	D7945	12 Max	9.2	8.7	8.8

Shell IH²: CPK-O

- Made from agricultural wastes and residues
- Majority mono- and di-cyclo paraffins
- Meets all of 'Table 1' properties in neat form
- Practically no aromatics
 - Improved specific fuel consumption and particulate emission
 - Early tests indicate cycloparaffinic molecules can satisfy seal swell requirements without aromatics
- Excellent thermal stability
- Good low temperature properties
- Nominally equivalent specific energy
- Improved energy density

Example cycloparaffin molecules

WIND ENERGY

Converting green energy, water and CO₂ into **Synthetic Kerosene**

INDUSTRIAL RECYCLED

CARBON (CO2)

CO,

PERNIS

500 litres in 2020

and the second of the second of the

Some of Shell's other SAF Collaborations

amazon Prime Air

Working with World Energy, Shell Aviation secured an agreement to supply up to six million gallons of SAF to Amazon Air in July 2020.

world energy

Shell Aviation and World Energy are working together to develop a scalable supply of SAF in the United States. This includes an agreement to supply SAF to Lufthansa at San Francisco Airport.

NESTE

In October 2020 Shell Aviation signed a collaboration agreement with SAF producer Neste that aims to significantly increase availability and supply for the aviation industry.

In 2018 Shell Aviation signed a long-term strategic collaboration with SkyNRG to promote and develop the use of SAF in aviation supply chains.

In October 2020 Shell Aviation signed a deal to distribute SAF to airline customers from Red Rock's new plant, currently under construction in Lakeview, Oregon.

Shell Aviation is working alongside World Energy and SkyNRG to supply SAF to Rolls-Royce for the first engine ground tests to use 100% SAF.

Summary

- A variety of feedstocks, technologies, and offsets will be required to meet industry and global CO₂ emissions ambitions
- Active in all areas of future transportation (Hydrogen, Electrification, LNG, etc.) and helping to understand how these technologies will shape the future of aviation
- Working throughout the entire supply chain to deliver low carbon solutions
- Actively pursuing approval of new sustainable aviation fuel molecules via novel processes
- Demonstrated PTL at a small scale and delivered fuel for use on a commercial flight
- Working with established and emerging industry partners to supply SAF today and tomorrow

