# An *Electric* Future of Aviation

Susan Ying, FRAeS. FAIAA SVP, Global Operations, Ampaire VP, Aerospace, SAE susan@ampaire.com

May 20, 2021

AMPAIRE

Founded 2016 First prototype flight May 2019 World record X-C flight Oct 2020 342 miles Market survey flights Hawaii Nov 2020

N337EE

MPAIR

Global: US, UK, CN, NL 20+ employees

# SURF AIR MOBILITY Inventing the future of aviation, together

Three departments, one mission.



# Top 10 emerging technologies of 2020

"From *electric planes* to tech sensors that can "see" around corners, this year's list is packed with inspiring advances...."



From sun-powered chemistry to whole-genome synthesis, the 10 technologies span industry, healthcare and society.

Forum



Δ

# Did you know?

*Electric engines* in planes could not only eliminate direct carbon emissions, but also reduce fuel costs by up to 90%, maintenance by up to 50% and noise by nearly 70%



| For an hour of flight           | Cessna 152    | Aircra |
|---------------------------------|---------------|--------|
| for an nour of hight            |               | Evekto |
| Energy (fuel assumed Avgas rate |               | Cessna |
| in US, electric assumed grid    | \$34          | Cessna |
| charging in US)                 |               | Cessna |
| Inspections                     | <b>\$18</b> . | Cessna |
|                                 | <b>Ŷ10.</b>   | Cessna |
|                                 |               | Cessna |
|                                 |               | BAY    |
| Power Plant MR & O              | \$12          |        |
|                                 | •             | Cess   |
| Oil (including oil change)      | \$3           | Rates: |
|                                 | -<br>-        |        |
| Operating Costs                 | \$67          | 3      |
|                                 |               |        |

| Aircraft Rental Rates   |             |                   |                      |
|-------------------------|-------------|-------------------|----------------------|
| Aircraft                | Speed (kts) | Features          | Rental Rate/Hr (wet) |
| Evektor SportStar       | 90          | Garmin 296        | \$122.00             |
| Cessna 152              | 108         | Garmin 345 ADSB   | \$113.00             |
| Cessna 172 (N&P Models) | 115         | GNS 430W GPS / L3 | \$129.00             |
| Cessna 172 (180 hp)     | 120         | GNS 430W GPS / L3 | \$129.00             |
| Cessna 172 RG           | 135         | GNS 530W / L3     | \$170.00             |
| Cessna 182R (230 hp)    | 137         | Garmin GTN 650    | \$180.00             |
| Cessna 182 RG           | 145         | GNS 430W GPS / L3 | \$180.00             |

### BAY AREA AIRCRAFT RENTALS





### ~\$100 - \$120 to rent a Cessna 152

Assume 1500 life cycle, 4500 flight hours

| For an hour of flight                                                              | Cessna 152 | Estimates of a<br>2-seater electric trainer |    |
|------------------------------------------------------------------------------------|------------|---------------------------------------------|----|
| Energy (fuel assumed Avgas rate<br>in US, electric assumed grid<br>charging in US) | \$34       | \$3                                         | Å\ |
| Inspections                                                                        | \$18.      | \$2                                         | -  |
| Battery Replacement                                                                |            | \$8                                         | 3  |
| Power Plant MR & O                                                                 | \$12       | \$1                                         | -6 |
| Oil (including oil change)                                                         | \$3        |                                             |    |
| Operating Costs                                                                    | \$67       | \$14                                        | -  |

AVINOR 100% ELECTRIC EXPERIMENTAL



Assume 1500 life cycle, 4500 flight hours

### ALPHA ELECTRO, THE FIRST SERIALLY PRODUCED ELECTRIC TRAINER



Made on 11 years experience of building electric aircraft In-house designed and produced:

Battery

Aug 2020 AIAA-IEEE Screenshot

- Battery management
- Engine
- Engine management
- Balancers
- Chargers



0,9€ ENERGY COSTS

OPERATING COSTS PER HOUR Including battery replacement, maintenance and overhaul

33€

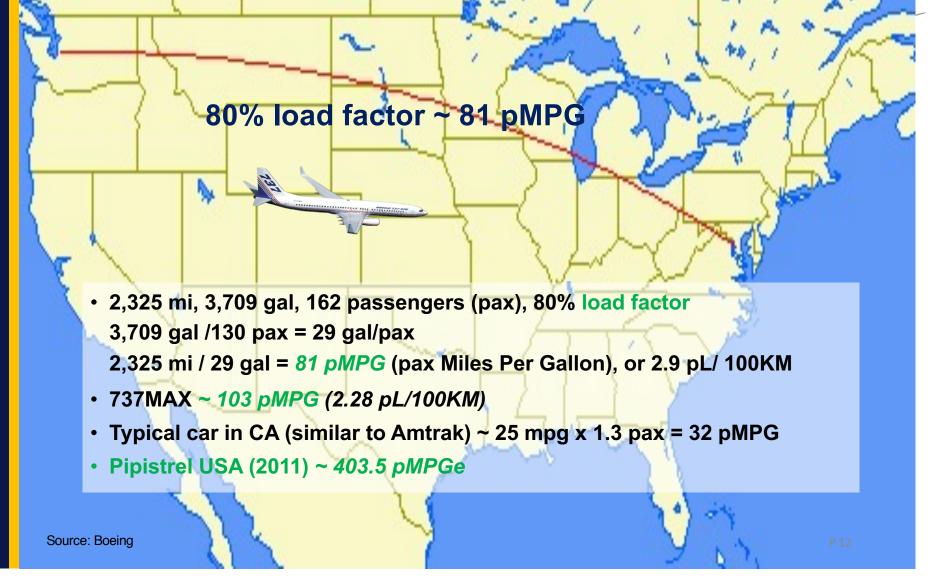
TOTAL COSTS PER HOUR Including also depreciation

| For an hour of flight                                                              | Cessna 152 | Estimates of a<br>2-seater electric trainer | Actual from Pipistrel<br>(2020) |
|------------------------------------------------------------------------------------|------------|---------------------------------------------|---------------------------------|
| Energy (fuel assumed Avgas rate<br>in US, electric assumed grid<br>charging in US) | \$34       | \$3                                         | €0.9 (\$1.1)                    |
| Inspections                                                                        | \$18.      | \$2                                         |                                 |
| Battery Replacement                                                                |            | \$8                                         |                                 |
| Power Plant MR & O                                                                 | \$12       | \$1                                         |                                 |
| Oil (including oil change)                                                         | \$3        |                                             |                                 |
| Operating Costs                                                                    | \$67       | \$14                                        | €17 (\$20 <b>)</b>              |

| For an hour of flight                                                              | Cessna 152 | Estimates of a<br>2-seater electric trainer | % difference |
|------------------------------------------------------------------------------------|------------|---------------------------------------------|--------------|
| Energy (fuel assumed Avgas rate<br>in US, electric assumed grid<br>charging in US) | \$34       | \$3                                         | -91%         |
| Inspections                                                                        | \$18.      | \$2                                         | -89%         |
| Battery Replacement                                                                |            | \$8                                         | N/A          |
| Power Plant MR & O                                                                 | \$12       | \$1                                         | -91%         |
| Oil (including oil change)                                                         | \$3        |                                             | N/A          |
| Operating Costs                                                                    | \$67       | \$14                                        | -80%         |

### 70 ~ 80% Reduction of Total Operating Cost

Does this scale? How will it scale?







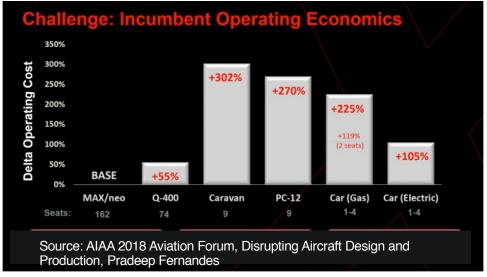

passenger Miles per Gallon (pMPG)

# Fuel Efficiency SEA to DCA by a Boeing 737





### What if the final destination is "not" Washington DC? The last 200 miles – Regional Air Mobility

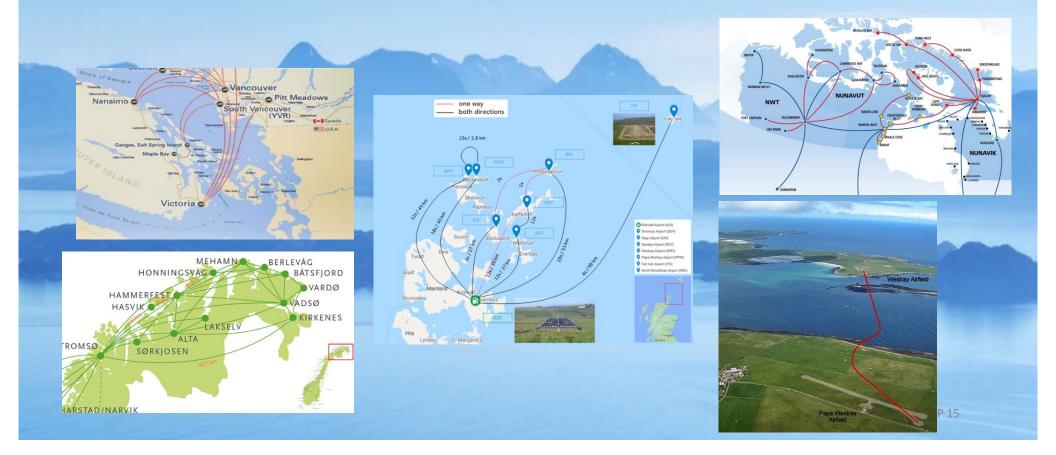



Fuel Efficiency What about RAM

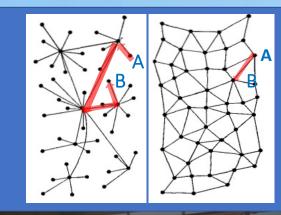


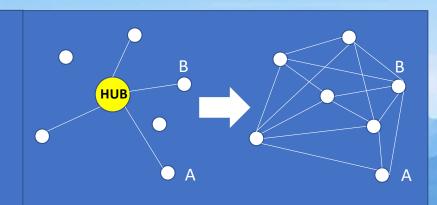
### Traditional Regional Aircraft from Hub to Final Destination dramatically higher operating cost for short- or thin-haul routes

| Aircraft               | Q-400<br>/Dash 8      | Caravan<br>/Cessna<br>208       | PC-12<br>/Pilatus                 |
|------------------------|-----------------------|---------------------------------|-----------------------------------|
| 1 <sup>st</sup> Flight | 1998                  | 1982                            | 1991                              |
| PAX                    | 78                    | 9                               | 9                                 |
| pMPG                   | 70<br>(3.38 L/100 km) | <b>32</b><br>(7.35 L/100<br>km) | <b>41.6</b><br>(5.66 L/100<br>km) |




RAM Op Cost Challenge

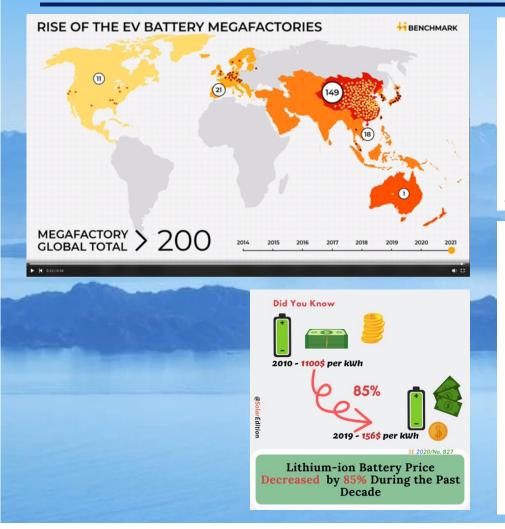

### **Disruptive Market: New P2P Short/ Thin Haul Routes in RAM**



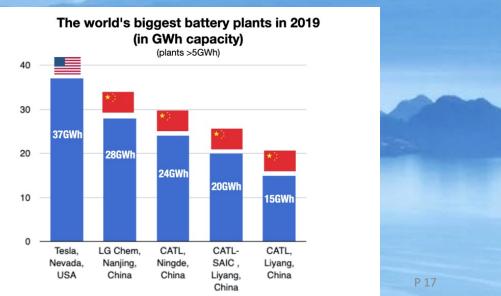

### Existing and New City/ Village Pairs and More Frequent Services



### Catalyst to a Fundamental Shift in Regional Operations







10x Destinations in US 4X Destinations in UK & EU New Destinations in Asia and Africa

Increased Accessibility Connects Communities

### Supply Chain: Economy of Scale from the EV Industry



Musk said in 2014 to his biographer Ashlee Vance: "The competitors are all sort of pooh-poohing the Gigafactory. They think it's a stupid idea, that the battery supplier should just go build something like that. ... You've got a chicken-and-egg problem where the car companies are not going to commit to a giant volume ... . When will the first non-Tesla Gigafactory get built?



### **Infrastructure:** Airports as Future *Energy Hubs*



## **Towards Zero Emission Regional-Aircraft Operations (2ZERO)**

UKRI Future Flight Challenge 2ZERO Consortium



- Aircraft Design Integration
- Systems Scaling & Integration
- Flight demonstration
- Consortium Lead



- R&D electric propulsion
- Propulsion systems
- Energy storage system



- ATM/ Airlines
  Operational Research
- Modeling & Simulations
- Aircraft Electrification
- University / R&T entity



Strategic contract

- Future-ready power distribution network
- Renewable energy, energy storage
- Charge points



- **Regional Airlines**
- Operational Use CasesPilots
- Maintenance & training





Airport Operations



- Business led partnership between private sector, local authorities, and universities.
- The West of England Aerospace Forum

### **Towards Zero Emission Regional-Aircraft Operations (2ZERO)** *Program Overview*

Holistic systems approach to simulate and demonstrate the **regional operations** of **electric aircraft** and the **scalable ecosystem required** for optimised economic and environmental impact.

Uncover changes necessary to enable future operations including:

- electric aircraft performance, standards, rules, and certification;
- <u>airport</u> infrastructure and operational requirements;
- <u>power</u> management (storage, distribution, charging) for renewable energy required; and
- optimisation of <u>airlines</u> and air traffic route system.



### **Committee Report Jan 1941**

Appointed by US Naval Academy of Science Von Karman, Millikan, Kettering, Marks, Christie, Mason

"The GAS TURBINE could hardly be considered a feasible application to airplanes mainly because of complying with the stringent WEIGHT requirement imposed by aeronautics... The present internal combustion engine used in airplanes weighs about 1.1 lbs/hp, and to approach such a figure with a gas turbine seems BEYOND THE REALM OF POSSIBILITY with existing materials."



Susan Ying, FRAeS. FAIAA SVP, Global Operations, Ampaire VP, Aerospace, SAE susan@ampaire.com

May 20, 2021

AMPAIRE