Estimating the Fuel-Burn Benefit of the Blended-Wing-Body Aircraft Configuration in the Regional Class Through Mixed-Fidelity Multidisciplinary Optimization

Aiden Gray

Computational Aerodynamics Laboratory University of Toronto Institute for Aerospace Studies

Institute for Aerospace Studies UNIVERSITY OF TORONTO Centre for Research in Sustainable Aviation

Introduction

Broad Context

Potential solution for significantly improved aircraft performance:

Conventional tube-and-wing (CTW) aircraft

Blended-wing-body (BWB) aircraft

Preliminary work:

One method of reducing risk is high-credibility configuration assessment studies (Optimization based on high-fidelity flow physics to gain accurate design insight)

Could achieve industry-wide environmental goals through low drag and weight:

- \blacktriangleright \downarrow Induced drag: High span without the typical weight penalty
 - Wing root offset by structurally thick (efficient) centerbody
 - Centerbody carries some lift
 - Aligned lift and weight loads
- ► ↓ Skin-friction drag: Low wetted area (no empennage; centerbody masks part of wing)

Compunding effects (Ex. smaller engines) gives:

 $\leftarrow \textbf{JetZero: 50\%} \downarrow \textbf{specific fuel-burn}$

DZYNE Technologies' BWB specific fuel burn:

- Regional: 43% \downarrow vs. A220-100 ¹
- ► Single-aisle: 39% ↓ vs. B737-MAX8¹

Yang, S. et al., 2018 AIAA Aerospace Sciences Meeting, Kissimmee, FL, USA.

BWB has high potential, but inherent challenges due to its highly integrated nature:

- **Design:** Possibly punitive stability and control requirements (already shown *feasible*)
- ▶ Problem formulation: Critical design requirements for efficient performance assessment ??

Numerical studies aimed at addressing these issues may expedite industry adoption

Motivating question:

► How to credibly assess BWB potential?

Some project goals:

- ▶ Formulate, study, and solve optimization problems to accurately assess BWB fuel burn
- Compare BWB and CTW aircraft in the regional class

GARDN-II UTIAS-Bombardier collaboration²:

Central question: Can regional-class BWBs satisfy typical S&C requirements? YES!

- One-engine-inoperative trim at very low speed ($V_{mcg} \approx$ Mach 0.15)
- Pitch acceleration of 3 deg/s² at initiation of rotation (large fuel-burn penalty)
- Cruise static margin ($K_n \ge -4\%$ MAC₀) and trim

Case studies:

- Wide 12-abreast vs. narrower 7-abreast cabin
 - Narrow-cabin BWBs have lower cruise-altitude, and MTOW and fuel-burn benefits
- Winglet- vs. centerbody-fin-mounted rudders
 - Both give similar optimal performance

Reist, T.A. et al., Multifidelity Optimization ..., Journal of Aircraft, 2019.

Optimization Problem Definition

Aircraft Design VS. Configuration Assessment

An example traditional approach to aircraft design:

- ► Conceptual design: System-level optimization based on low-fidelity models
- Preliminary design: Localized optimization and design improvements
- ▶ Detailed design: Wind-tunnel testing and iterative incremental improvements

Efficient high credibility configuration assessment:

- Mixed-fidelity optimization including RANS simulations (3 steps simultaneous; unconventional aircraft analyzable)
- Approach: Use high-fidelity where needed, but ONLY where needed, in order to accurately assess the potential of the BWB configuration

Subgoal: Study of problem-definition elements

Impact of typical aircraft-design requirements and geometric freedom on optimal performance and geometry

Main goal: Comparison of BWB and CTW aircraft

Advantage of BWBs in the regional-class

Industrially relevant, system-level objective functions for aircraft configuration assessment

Target characteristics \downarrow	Block fuel	Direct oper. costs	Climate-change impact
Modeling uncertainty	\downarrow	~	\uparrow
Comparability*	\checkmark	\approx	\approx
Environmental focus	\uparrow	\approx	\uparrow
Airline variability	\downarrow	1	↑
Selection:	\checkmark		

* Comparability across different configurations, i.e. low configuration-dependent uncertainty

Options for reference CTW aircraft:

- 1. Existing, best-in-class CTW (performance estimated through optimization): E190-E2
- 2. CTW optimized with higher design freedom but current technologies
- 3. CTW optimized with possible higher design freedom and future technologies

Implications of using current technology levels:

- Lowering the barriers to entry of regional-class BWB by:
 - demonstrating that inherent benefits persist without future technologies
 - \implies How advantageous is BWB with only the minimal necessary change from the current status quo ?
 - having low modeling uncertainty, so high credibility
- ► Trade-off:
 - Some future technologies disproportionately benefit the BWB (Ex: boundary-layer-ingesting engines)

Step 3: Mission Selection

Mission definition

- Range [nmi]: Analysis: 500
 Sizing: 2150 (max. payload) and 3400 (max. range)
 Diversion: 100
- Passengers:

104

► Altitude [ft]:

Analysis and sizing: 37 000 (CTW), 44 000 (BWB; main goal) Diversion: 15 000

Mach number:

Analysis and sizing: 0.78

Diversion: 0.50

Mission profile:

Optimization (no diversion): T/O, climb, cruise, descend, land

Sizing (with diversion): T/O, climb, cruise, descend, climb, cruise, loiter, descend, land

Critical BWB problem-definition elements (confirmed to be critical during Subgoal work):

Performance-based design requirements:

- Cruise trim
- One-engine-inoperative trim at on-ground minimum control speed (V_{mcg})
- Takeoff field length and top-of-climb rate of climb
- Low-speed (Mach 0.20) trim and static margin (aftmost CG, MTOW, 0 thrust)
- Pitch acceleration of 3 deg/s^2 at initiation of takeoff rotation
 - ▶ Not imposed if variable-length landing gear (e.g. pivot-piston) is assumed

Relevant geometric constraints:

- Cabin shape inclusion within centerbody/blending-region
- Tip-strike (9 deg pitch, 9.5 deg roll)
- 3-ft ground clearance when on all wheels
- Available wing volume \geq fuel volume

*** High geometric freedom is key to satisfying many simultaneous constraints with this highly integrated aircraft configuration

Modeled disciplines and model fidelity:

High fidelity

(for physical quantities highly sensitive to fine model details):

- Aerodynamics (RANS, not even Euler)
- Medium fidelity (if low fidelity is insufficient but high fidelity is not needed):
 - Mass properties
- Low-fidelity (if main effect is associated with high-level parameters (e.g. wing span, sweep, etc)):
 - Structures
 - Propulsion
- Mixed-fidelity
 - Flight mechanics (mixed high-, medium-, and low-fidelity models)
 - Takeoff field length
 - Rate of climb
 - Static margin
 - ► Trim

Step 6: Design Variables

Ĵ

418 design variables provide appropriate freedom for constraint satisfaction:

Optimization problem solved using cost-efficient (possibly decoupled) mixed-fidelity strategy:

- **CTW**: 2-phase decoupled optimization solved sequentially (low-fi then high-fi) because:
 - High-fidelity models are not needed to determine the optimal value of many main (system-level) design variables
- **BWB:** 1-phase coupled optimization with all models solved simultaneously because:
 - Multidisciplinary and/or mixed-fidelity models that include the highest fidelity level are needed to determine the optimal value of many main (system-level) design variables

Subgoal Results: Effect of Problem-Definition Elements

8th International Workshop on Aviation and Climate Change

- **?** What is the impact of each major problem-definition element on the block-fuel-burn objective function and the optimal design ?
- ? How does a regional-class BWB compare to an existing, best-in-class CTW?

Baseline Design (with Pivot-Piston Landing Gear)

Notable design features:

- High geometric freedom gives tight cabin contouring and good streamlining
- Inboard elevons used as flaps at low speed
- Relies on vortex lift at high AoA / low-speed flight

Low-Speed Static Margin Sensitivity: $\approx +0.52\%$ BFB per unit K_n bound

Adding a Conventional Rotation Constraint

Design features notably different from baseline, that help produce a positive pitching moment, or reduce the required pitching moment, at rotation:

- Wing moved forward to move center of pressure forward
- Transition-region leading-edge highly "carved" and twisted nose-up
- CGs moved forward to move main landing gear forward to increase pitch effector leverage (especially elevator)
- Thrust angle hit lower bound of -2 deg

Performance penalty: $\approx 23\%$ block fuel burn Weight penalty: 10% MTOW

Low (Conceptual-Design-Like) Centerbody Geometric Freedom

Design features notably different from baseline:

- Bulkier centerbody
- Reinforces the importance of high geometric freedom for the efficient satisfaction of many competing constraints in this integrated aircraft configuration

Performance penalty: +6.0% block fuel burn Weight penalty: +2.5% MTOW

Problem version	$\Delta BFB/BFB_{\text{baseline}}$
Low-speed static margin bound $= -\infty$ Low-speed static margin bound $= -4\%$ MAC ₀ Low-speed static margin bound $= 0\%$ MAC ₀ Low-speed static margin bound $= 4\%$ MAC ₀ With conventional rotation mechanism No OEI-trim constraint No TOFL constraint Low (conceptual-design-like) centerbody geometric freedom	$\begin{array}{r} -2.7\%\\ \text{Baseline} = 20481\text{lb}\\ +2.1\%\\ +4.2\%\\ +23\%\\ -1.1\%\\ -0.99\%\\ +6.0\%\end{array}$

Block fuel burn (BFB) impact of individual problem-definition elements

Main-Goal Results: Comparative Study

8th International Workshop on Aviation and Climate Change

- **?** What is the impact of each major problem-definition element on the block-fuel-burn objective function and the optimal design ?
- ? How does a regional-class BWB compare to an existing, best-in-class CTW?

One Main Measure of Performance

Comparative study of E190-E2-like CTW with regional-class BWB (500-nmi nominal mission)

8th International Workshop on Aviation and Climate Change

	Ref. CTW	Conv. rotation	Pivot-piston gear
Wing span MTOW	33.71 m 56 400 kg	+27.8% -8.0%	+16.7% -12.9%
OEW Maximum takeoff thrust (per engine) Altitude * Cruise L/D *	33 000 kg 92.8 kN 37 000 18.1	-6.4% +7.4% 44 000 +22.1%	-12.1% -17.2% 44 000 +23.8%
Block fuel burn	2 280 kg	-11.5%	-16.3%

Multifidelity multidisciplinary optimization results

 * Cruise data are reported at the start of cruise for the nominal mission.

Conclusion

8th International Workshop on Aviation and Climate Change

Conclusions

Subgoal: Effect of problem-definition elements on optimal design and performance

- Low-speed static margin sensitivity: $\approx 0.52\%$ block fuel burn per % MAC₀ K_n bound
- ▶ Added rotation constraint: +23% block fuel burn (with conventional thrust angle limit)
- ► Low (conceptual-design-like) centerbody geometric freedom: +6.0% block fuel burn

Main goal: Regional-class CTW and BWB comparison

- Rotation using only pitch-effector deflections is punitive (unconstrained thrust angle)
 - With conventional rotation constraint: BWB benefit = -11.5% block fuel burn
 - With pivot-piston landing gear: BWB benefit = -16.3% block fuel burn

Future work:

- Cabin shape & altitude relationship
- Multipoint at cruise for robustness to variations in cruise conditions
- ► Single-aisle-class BWB

