

Energy Sources and Energy Conversion Processes for Sustainable Aviation

Dr. Ajay Misra NASA Glenn Research Center

Presented at the 8th International Workshop on Aviation and Climate Change Toronto, Canada, May 31, 2023

Different Energy Sources and Energy Conversion Processes

Path for Decarbonization of Aviation

Source: Roland Berger

NASA GRC • RESEARCH AND ENGINEERING DIRECTORATE

Evolution of All-Electric Aircraft with Advances in Battery Technology

Progression of Specific Energy of Li Batteries with Liquid Electrolyte

Progression of Specific Energy of All Solid State Li Batteries

Path to Achieving 500 Wh/kg or Higher Pack Specific Energy

Challenges for Hydrogen Powered Aircraft

High power density PEM fuel cell system

Stable and low NO_x combustor

New aircraft concept

Lightweight and low volume liquid hydrogen storage system

Hydrogen infrastructure

Handling of liquid hydrogen

Technology Challenges for Hydrogen Fuel Cell Powered Aircraft

higher)

Integrated, lightweight thermal

9

management system

- Lightweight materials and structural ulletconcepts
- Integration with aircraft

NASA GRC • RESEARCH AND ENGINEERING DIRECTORATE

Use of Ammonia as a Fuel

Potential Scenarios for Aviation Decarbonization

Aircraft	2025	2030	2035	2040	2045	2050
9-10 seat commuter	 Battery electric Hydrogen fuel cell 	 Battery electric Hydrogen fuel cell 	 Battery electric Hydrogen fuel cell 	 Battery electric Hydrogen fuel cell 	 Battery electric Hydrogen fuel cell 	 Battery electric Hydrogen fuel cell
10 – 50 passenger, commuter/regional	SAF	Hydrogen fuel cell	 Battery electric (<30 PAX) Hydrogen fuel cell 	 Battery electric Hydrogen fuel cell 	 Battery electric Hydrogen fuel cell 	 Battery electric Hydrogen fuel cell
50-100 passenger regional	SAF	SAF	Hydrogen fuel cell	Hydrogen fuel cell	Battery electricHydrogen fuel cell	 Battery electric Hydrogen fuel cell
100 – 150 passenger	SAF	SAF	Hydrogen combustion turbine	Hydrogen combustion turbine	Hydrogen combustion turbine	 Hydrogen combustion turbine Hydrogen fuel cell
150 + passenger medium haul	SAF	SAF	SAF	SAF	SAF	Hydrogen combustion turbine
150+ passenger long haul	SAF	SAF	SAF	SAF	SAF	SAF
Hydrogen and battery-electric aircraft projected to be up to a third of the aviation energy demand in 2050 ₁₁						

NASA GRC • RESEARCH AND ENGINEERING DIRECTORATE

Sustainable Aviation Fuel

Power – to - Liquid (PtL) Fuel

Power-to-Liquid Fuel Projected to be Cost Competitive Beyond 2040

Impact of Net-Zero Aviation on Energy Usage

Projected energy need for net-zero aviation

By 2050, net-zero aviation could require an additional 5850 terawatt-hr (TWh) of renewable electricity (5% of the expected global demand), 95 million tons of hydrogen (0 - 20%) of the expected global demand, and 12 exajoules of sustainable biomass (10-25% of the global expected global sustainable biomass availability)

Source: McKinsey & Co

Efforts to Increase Energy Conversion Efficiency and Reduce Energy Consumption for Propulsion Systems

Single-Aisle Turboelectric Aircraft with Aft Boundary Layer Propulsion (STARC-ABL)

Hybrid electric propulsion

SUbsonic Single Aft eNgine (SUSAN) Electrofan, which shows great potential to reduce aviation energy consumption and emissions

Gas turbine – solid oxide fuel cell (SOFC) hybrid system

Increasing energy conversion efficiency of gas turbine engines

Summary

- Multiple pathways, with no single clear alternative, for decarbonization leading to net-zero aviation in 2050
 - Battery-electric, hydrogen-powered, sustainable aviation fuel including power-toliquid
 - Significant technology advances needed for using alternate energy sources for large aircraft
- Significant energy requirement for realizing net-zero aviation
- Infrastructure challenges remain for realizing net-zero aviation
- Gas turbine engine improvements and hybrid electric propulsion systems will be important for reducing CO₂ emissions in the near and mid-term