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Path for Decarbonization of Aviatiqn
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Progression of Specific Energy of Li Batteries with Liquict Elégt
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Path to Achieving 500 Wh/kg or Higher Pack Specifici
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Technology Challenges for Hydrogen Fuel Cell Poweree
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Use of Ammonia as a Fuel
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Potential Scenarios for Aviation Decarboni
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Hydrogen and battery-electric aircraft projected to be up to a third of the aviation energy demand in 2050
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Sustainable Aviation Fuel
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Power — to - Liquid (PtL) Fuel
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Power-to-Liquid Fuel Projected to be Cost

Competitive Beyond 2040
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Impact of Net-Zero Aviation on Energ

Projected energy need
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Efforts to Increase Energy Conversion Efficiency and K€

Energy Consumption for Propulsion.<
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Summary

« Multiple pathways, with no single clear alternative, for decarbonization
leading to net-zero aviation in 2050
— Battery-electric, hydrogen-powered, sustainable aviation fuel including power-to-
liquid
— Significant technology advances needed for using alternate energy sources for
large aircraft

« Significant energy requirement for realizing net-zero aviation
 Infrastructure challenges remain for realizing net-zero aviation

« Gas turbine engine improvements and hybrid electric propulsion systems
will be important for reducing CO, emissions in the near and mid-term
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