ENGINE-AIRFRAME INTEGRATION STUDIES FOR FUTURE EFFICIENT PROPULSION SYSTEMS

Arne Stuermer

DLR Institute of Aerodynamics & Flow Technology, Team Leader Engine-Airframe Integration IWACC 8 @ UTIAS, Toronto, ON, CA, May 31-June 2, 2023

Arne Stürmer, DLR AS-TFZ.-I, 2023/06/0

Introduction & Motivation: I have missed views like this in 2020 & 2021

2 years lost

CAGR: 3.9%

2x every 19 years

Introduction & Motivation The Challenge of Integrating Efficient Propulsion Systems Efficiently

- Propulsion technology will be core part of technology answer
- Several promising engine technologies under study:
- UHBR turbofans (with geared fans), Open Rotor/Fan engines, Propellers, Distributed (propeller) propulsion, Boundary Layer Ingesting (BLI) engines
- Most target improvements in propulsive efficiency:

Thrust: $F = \dot{m} (v_9 - v_0)$

Propulsive Efficiency: $\eta_P = 2/(1 + v_9 / v_0)$

- Mostly clear propulsive efficiency advantages at engine level
 - Challenge (aerodynamics and beyond) is integration of these propulsion technologies with the airframe

DISTRIBUTED PROPULSION

DENNIS KELLER DLR INSTITUTE OF AERODYNAMICS & FLOW TECHNOLOGY

Distributed Propulsion Motivation

(Hybrid-)electric propulsion as a promising approach to significantly reduce CO2 emissions

 Opens up design space due to scalability of electric motors

"Distributed propulsion" one new design option

- Advantages are primarily based on flight mechanical / safety considerations (control surface size, installed thrust, ...)
- Potential for improvements of aerodynamic efficiency at cruise:
 - "Direct" efficiency improvement (wing-tip propeller, thrust re-distribution, shape,...)
 - "Indirect" efficiency improvement (high-lift perfo)
- Optimal performance requires detailed trade-off studies

Distributed Propulsion The LuFo SynergIE Project

German nationally funded project SynerglE (2018-2021)

"SynergIE" hybrid-electric concept aircraft studied at conceptual level and using hi-fi CFD parameter studies

DLR TAU-Code RANS-based studies using actuator disc propeller modeling performed for:

- Basic integration effects
- Wing Tip Propeller
- Streamwise propeller position / propeller count
- High-lift performance evaluation
- Wing size
- Impact of lift distribution
- Thrust re-distribution
- Wing L.E. shape modification
- Variation of nacelle diameter

	TLARS		\uparrow			
	Payload	70 PAX		Gas Turbines with Generators on top of the fuselage	-	
	Range	1000 nm			4	
	Cruise Mach	0.55		ε		
	Cruise Altitude	27000 ft		27.7	Electric Motor	
	TOFL @ SL,ISA	1400 m				 Electric Motors
	Approach Speed	120 kts		,		 Inverters Power Lines
	2 Prop	6 Pr	op	* +	12 Prop	A of Goorgi Antanasov
					courtes	y of Georgi Antanasov

Evaluation of aero-propulsive efficiency (aerodynamics + propeller) via analysis of required propulsive power:

$$\frac{C_{T}}{\eta_{\text{prop}}} = \frac{C_{L}}{\frac{L}{D} * \eta_{\text{prop}}}$$
cruise flight!

Distributed Propulsion: Impact on Wing Aerodynamics Basic Propeller Integration Effects – 2 vs 12 Propellers

• Beneficial propeller slipstream effect possible

0.15

0.1

0.05

0

-0.05 L

0.2

 $C_D C_D C_{loc}/c_{ref} q_{loc}/q_{\infty}$

7

- Superior aerodynamic efficiency of 2 Prop vs. 12 Prop
- Drag increase in downwash area decreases towards wing tip
- Required propulsive power similar due to increase in propeller efficiency of 12 Prop (vs. 2 Prop)

* for entire A/C

Distributed Propulsion: Impact on Wing Aerodynamics Basic Propeller Integration Effects – Wing-Tip Propeller

Impact on wing aerodynamics

	x		x		
	12 eProp	o (w/o WTP)	12 eProp (w/ WTP)		
	vs. 2 Prop (iso)			vs. 2 Prop (iso)	
$(C_L)_{AF}$	0.522	-0.7 %	0.522	-0.6 %	
(L/D) _W	28.9	0.7 %	29.2	2.3 %	
(L/D) _{AF}	17.4	0.2 %	17.5	0.8 %	
T _{req} *	11.67 kN	-0.7 %	11.59 kN	-1.4 %	
				* for entire A/C	

• WTP beneficial for L/D

Distributed Propulsion: Impact on Wing Aerodynamics Basic Propeller Integration Effects – Wing-Tip Propeller

Impact on propeller efficiency and req. power

9

	x		x		
	12 eProp	12 eProp (w/o WTP)		p (w/WTP)	
		vs. 2 Prop (iso)		vs. 2 Prop (iso)	
$(C_L)_{AF}$	0.522	-0.7 %	0.522	-0.6 %	
(L/D) _W	28.9	0.7 %	29.2	2.3 %	
(L/D) _{AF}	17.4	0.2 %	17.5	0.8 %	
T _{req} *	11.67 kN	-0.7 %	11.59 kN	-1.4 %	
η _{Prop}	93.6 %	3.6 %	93.3 %	3.3 %	
P _{req} *	2.106 MW	-4.1 %	2.096 MW	-4.5 %	
				* for entire A/C	

WTP beneficial for L/D

- Reduced propeller efficiency counteracts beneficial
- effect on aerodynamic efficiency

Distributed Propulsion: Configuration Study: Number of Propellers

- Beneficial propeller slipstream effect in wing aero performance possible
- Strong dependence on prop-wing-distance
- Minimum C_D with 6 propellers
- Propeller efficiency benefits from installation due to reduced inflow velocity

Distributed Propulsion: Configuration Study: Wing Size Reduction

P_{req}

-2.3 %

-3.3 %

Distributed Propulsion: Summary & Conclusions

Clear potential for improved (cruise) performance of distributed propeller propulsion seen in the SynergIE project

- Vast set of of design parameters require careful study even just in terms of maximizing the aerodynamic efficiency
 - Balancing between best airframe and best propeller performance often critical
- High lift performance clealy benefits from distributed propellers at take-off approach performance (little to no thrust) is challenging
- Certification criteria, off-design performance (1-x propeller inpoperative,...) are still unclear
- Continued work with refined design studies under way in the frame of the EUfundend IMOTHEP project

ASSESMENT OF BLI POTENTIAL

ANDREAS VINZ & ARNE STUERMER DLR INSTITUTE OF AERODYNAMICS & FLOW TECHNOLOGY

Assessment of BLI Performance Benefit Introduction **DLR TuLam-CRISP-Multi-Fan** Engine Aircraft Engine Aircraft Length 37.57 m Fan diameter 2.343 m Wing area 122.0 m² Nr. of blades 1/2 10/12 Wing span 34.0 m Bypass ratio 17:1

DLR AGATA project (2016-2022):

- Focus on BLI impact on fan performance and acoustics
- Large-scale model engine tests at DLR in Cologne
- Conta-rotating fan engine

Aircraft from DLR TuLam Project – <u>T</u>oughen-<u>up</u> <u>Lam</u>inar Technology

- SMR aircraft with Forward Swept Natural Laminar Flow Wing (FSW-NLF)
- Top Level Aircraft Requirements (TLARs) match with A320-200
- Cruise design point: Ma=0.78, Re_{AMC}=24*10⁶, C_L=0.52

Assessment of BLI Performance Benefit Numerical Analysis Approach

Engine BC

3

Studies of installed engine modeling fidelity in CFD driven by analysis goals

- 1. Fully modeled fan in uRANS simulations current highest fidelity and accuracy, at high computational costs
- 2. Steady RANS approach with actuator disc modeling of the fan stages shown as a good accuracy approach for studies of airframe-fan interactions at lower computational costs

2D Actuator Disc

3. Steady RANS simulations with the classical engine boundary condition for relevant results on the airframe side

Assessment of BLI Performance Benefit Numerical Analysis Approach

Very good match between AD and uRANS engine peroformance predicitions (~1%)

	$p_{t2}^{}/p_{t1}^{}[-]$	p _{t3} /p _{t2} [-]	p _{t3} /p _{t1} [-]	m [kg/s]
uRANS Isolated Engine	1.148	1.116	1.281	319.6
AD Isolated Engine	1.131 (-1.4%)	1.122 (+0.5%)	1.269 (-0.9%)	315.6 (-1.3%)
uRANS BLI	1.147	1.113	1.276	310.2
AD BLI	1.125 (-1.9%)	1.123 (+0.9%)	1.263 (-1.0%)	308.9 (-0.4%)

	uRANS		AD		
	Isolated Engine	BLI	Isolated Engine	BLI	
Runtime [h]	168	336	8 21x faster	12 28x faster	
CPU hours	215 040	668 128	1024 210x better	1536 434x better	

Assessment of BLI Performance Benefit Numerical Analysis Approach

Study of BLI performance benefits at aircraft level using an actuator disc approach for a thrust-trimmed aircraft at cruise conditions:

$$C_{L} = 0.52$$

$$C_{t} = C_{D} \text{ (Thrust = Drag)}$$

- Fixed core engine operating point:
- $P_{tot}/P_{inf} (= 1.393)$
- $T_{tot}/T_{inf} (= 2.269)$

Assessment of BLI Potential Inflow Distortions for Rotor 1 and Rotor 2

DOE	DC60	Θ [°]
Conv	0.001	
0	0.124	-102.5
0.15	0.220	-104.0
0.30	0.293	-105.0
0.35	0.318	-103.5
0.40	0.332	-103.5
0.45	0.341	-103.0
0.50	0.349	-102.0
0.55	0.342	-102.0

DOE	DC60	Θ [°]
Conv	0.003	
0	0.110	-103.0
0.15	0.205	101.5
0.30	0.275	-100.5
0.35	0.298	-100.0
0.40	0.308	-101.5
0.45	0.313	-101.5
0.50	0.316	-101.5
0.55	0.306	-102.5

- Magnitude of inflow distortion diminishes only slightly for the second rotor (~10%)
- 2. Circumferential broadening of inflow distortion for second rotor due to swirl effect and interaction of front blades with fuselage boundary layer

Assessment of BLI Potential BLI Impact on Required Rotor Shaft Power

- Shaft power reduction potential due to BLI:
 - P_{DOE55} reduced by 5.3% versus P_{conv}
- "Break-even" at DOE = 30%
- Altered loading balance between rotors 1 & 2

Assessment of BLI Potential Aerodynamic Analysis

Assessment of BLI Performance Benefit Summary & Outlook

- Studies of rear-engined aircraft concept in AGATA indicate a BLI performance benefit versus classic under-wing mounted engine aircraft on the order of ~5%
- Project scope did not allow for a refinement of the engine-airframe integartion design, to address identified aerodynamic losses of the nacelle integration
 - Actual benefit may be somewhat larger
 - But: Known aircraft structural weight increases due to rear-mounted engine
 installation may reduce efficiency improvement potential at aircraft level
 - But: Electrically driven propulsors may recover some of that disadvantage
- Outlook: BLI may truly come into ist own for more radical departures from tubeand-wing configurations, i.e. BWB-type configurations

AOA EFFECTS ON OPEN FAN ENGINE PERFORMANCE

ARNE STUERMER DLR INSTITUTE OF AERODYNAMICS & FLOW TECHNOLOGY

AoA Effects on Open Fan Engine Performance Introduction

Open Rotor and Stator (ORAS) or Unducted Single Fan (USF) or Open Fan

 High bypass ratio → high propulsive efficiency

Clean Sky 2 funded studies of installation effects since 2022

 Here: Impact of AoA on ORAS performance

Generic Open Fan design with 12 rotor blades and 9 SRVs (Swirl Recovery Vanes)

AoA Effects on Open Fan Engine Performance Numerical Analysis Approach

- DLR TAU Code CFD analysis, building on previous related expertise
- uRANS investigations of geometrically fully represented rotor & stator
- Studies done for noise-emissions ciritcal take-off condition:

Case	М	h [ft]
Take-Off @ α=0°	0.273	2132.55 @ ISA+10
Take-Off @ α=10°	0.273	2132.55 @ ISA+10

AoA Effects on Open Fan Engine Performance Aerodynamic Analysis @ α=10° - Baseline SRV Pitch

AoA Effects on Open Fan Engine Performance Aerodynamic Performance Impact - Adjusted SRV Pitch

	C _τ	С _Р	η	C _{T,R} :C _{T,} s
α=0°, Baseline	0.792	1.428	0.670	94:6
α=0°, SRV-7°	0.779	1.428	0.659	96:4
α=10°, SRV-7°	0.811	1.462	0.670	95:5

Angle of attack requires SRV pitch adjustments to avoid separated flow

 Efficiency penalty due to installation effects

AoA Effects on Open Fan Engine Performance Summary & Conclusions

- Installation effects have an important impact on an Open Fan engine operating point
- Angle of attack requires SRV pitch adjustments to avoid separated flow, at the cost of reduced efficiency
- Results point to azimuthal variation of the SRV pitch as a possible solution to mitigate the performance penalty
- Additional studies on the simulation approach as well as further aerodynamic analysis discussed in AIAA AVIATION paper
- Continued research collaborations with industry now addressing wing integration of Open Fan engines in nationally and EU funded projects

Introduction & Motivation The Challenge of Integrating Efficient Propulsion Systems Efficiently

Promising technologies Devil in the details

Thanks for your interest!

ENGINE-AIRFRAME INTEGRATION STUDIES FOR FUTURE EFFICIENT PROPULSION SYSTEMS

Arne Stuermer

DLR Institute of Aerodynamics & Flow Technology, Team Leader Engine-Airframe Integration IWACC 8 @ UTIAS, Toronto, ON, CA, May 31-June 2, 2023

