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CO ntext - g O a aVIatlon Industry & ICAO projections Aviation CO, mitigation studies
A Airbus (10 year projection) 1. Waypoint 2050 (high)
25,000 -  aAirbus (20 year projection) 2. Waypoint 2050 (central) 1
. . . Trre O Boeing (10 year projection) 3. Waypoint 2050 (low)
* Global aviation in 2019: 8.9 trillion passenger-km (RPK), @ s 0y rfcton) 4 el i
- g 20,000 -  ©Douglas (15 year projection
232 billion frelght tonne-km (lCAO, 2021) = o Douglas (20 year projection) 2
% O ICAO (10 year projection) A";i%\gemg
* Total tonne-km in 2019 ~ twice year-2005 levels & 15,000 | ®ICAO(20year projecton) e
918 MtCO,, mostly from passengers (~85%; ICCT, 2020) 2 10,000
* Industry projections of 5%/year RPK growth were accurate...
until COVID19 5,000
* Growth projections driven mainly by income growth 0 ‘ |
(including outside Europe/North America) 1950 1970 1990 2010 2030 2050
- . - S : A. Schafer f NCAWE, 202
65 million jobs, $2.7 trillion GDP globally (ATAG, 2020) [Source: A. Schafer from CONCAWE, 2023]

* High capital intensity, often low profitability
e The COVID19 pandemic led to a 66% decrease in RPK 2019-2020 (IATA, 2021)
* Smaller decreases in freight and fuel use (-9% FTK, -45% fuel; IATA, 2021)

* Projected return to year-2019 activity levels around 2023; ~4%/year RPK growth (Airbus, 2021; Boeing 2021)
* Projected pandemic impact on cumulative CO, 2019-2050 is under 10% (Dray & Schafer, 2021)
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Introduction

e The climate impacts of aviation are around twice that of aviation CO, alone

* Around 90% of aviation GHG impacts are from passenger aircraft (plus hold freight) and around 10% freighters

e Auviation currently accounts for around 3.5% of anthropogenic effective radiative forcing (Lee et al. 2020)

CO,eq includes:
Climate Cozeq E CO, from aircraft engines
- ’ ’ R TK - O Se tS Lifecycle CO, from fuel
impaCt E RTK ff prod‘tlxction

J Non-CO, from aircraft

\ J\ J\ ] |
(COZEQ) ! ! , ! ! engines (Contrails, NOXx,

Composition  Intensity Demand  allowances... Lifecycle non-CO, from fuel

* Fuel Composition: requires move away from fossil kerosene for significant change production (CH,, N0, ...)
* Energy intensity: -2.7%/year 1980-2018, but slower rates (<2%/year) projected in future

 RTK: +5.5%/year 1980-2018, 2.4-4.1%/year projected 2019-2050

* Non-CO,: requires change in fuel type or operations for significant change

* If current trends continue, this suggests within-sector climate impact will increase
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CO,eq/E: Fuels

Towards Zero—Carbon Aviation

Usable in existing aircraft

A

_m Drop-in Fuels Cryogenic Fuels Electricity

Feedstock

Electricity intensity
kWh(el)/kWh

TWh(el) for 25 EJ fuel*

Capital intensity
mInS/boe/d

BIn. S for 25 EJ fuel

Production Cost
S/bbl(JFE)

Resource Potential EJ

Lifecycle GHG Em. %

Crude Oil

~0

~0
0.01-0.03

(220)

6—22
(6 —110)

> 24,000
100

Low-Cost
Biofuels

Waste &
Plant Qils

0.02

140
0.03-0.13

~900
150-230

(130 -210)
0.3-20.5

27 —-48

(160 — 260)

High-Cost
Biofuels

Cellulosic
Biomass

<0.01

<70
0.13-0.20

~1,800
180 - 290

60-110
26-29

Power-to-

Liquids

H2 + atm.

Co,
2.0 (1.8)

~13,200
1.0 (0.3)

~7,300

380
(100)

infinite

19

Low-cost
LNG

Manure,

MSW, etc.

0.05

~350
0.3

3,400
110-230

(113 - 230)

30
-8-14

High-Cost
LNG

H2 + atm.
CO,

2.0 (1.8)

~13,200
1.0 (0.3)

7,300

390
(110)

infinite

32

Liquid
Hydrogen

Water +
Zero-C EI.

1.8 (1.5)

~11,500
1.3 (0.4)

9,500

440
(130)

infinite

29

Zero-C
Electricity

1.0

~6,900
0.14 (0.07)

1,200

60 — 150
(30-70)

infinite

0

[Table: A. Schafer, F. Allroggen, M. Stettler, C. Falter, C. Grobler, from Dray et al. 2022. Numbers in parenthesis are projected 2050 values.]
* 2021 Global total renewable electricity generation: 8,300 TWh (IEA, 2021)
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CO,eq/E: Drop-in fuels

* Drop-in biofuels and/or synthetic (PTL) fuels can be used
in current aircraft without modification

* Biofuels already in (limited) use at some airports (<0.1% of
global fuel; IEA, 2019)

» Targeted by proposed EU and UK blend mandates (e.g.

RefuelEU)
* May reduce non-CO, impacts (e.g. Grewe et al. 2017) but e —r
does not eliminate them I[\la:‘;::al f:bgt‘;fo;y]°“rce' ano
 E.g. ~40% decrease in contrail/AIC impacts due to reduction in
soot

* Challenges:
* Limited supply of biomass compared to likely 20-30 EJ fuel/year required by 2050

* Not (yet) cost-competitive with fossil Jet A; biofuel cost below PTL cost at present but unit costs may go
up as more supply is needed (—>higher cost biomass)

e Scaling up production requires significant infrastructure investment
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CO,eq/E: non drop-in fuels

Battery —— 4 3

* Very limited range and payload performance likely to 2050

electric * Included in modelling, but overall impact minimal
BiOLNG/ j * Similar supply/cost issues to synthetic kerosene, but
SNG : also need to change fleet/infrastructure - excluded
e Hydrogen: Recent work (e.g. FlyZero/NAPKIN)
suggests can be a feasible/cost-effective option
e Several options: all eliminate in-flight CO,
Hyd rogen a Fuel cell + electric propulsors — small aircraft?

o Direct hydrogen combustion — large aircraft

e Key challenges are requirement for new
infrastructure and fleet, uncertain costs

e In development — Airbus, Rolls Royce, GKN, etc.

[Image sources: Evation, Wikimedia Commons, Airbus]
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E/RTK and CO,eq/E : Changes in aircraft operations

e Removing operational/Air Traffic Control inefficiencies — e.g. Adverse % [Source: Reynolds, 2008]
more direct routing, reduced taxi time |

Arrival fix

o E.g. NextGen, SESAR — likely impact is a few % total CO,/RTK reduction

En Route Airspace Al
- - -Holding !
Arrival i

procedures-

. A Taxiin

Departure
" procedures

e Ongoing improvements in load factor likely to continue
o E.g. 2019 average 82%, best airline average 90% (ICAO, 2021) — worse during COVID19

e May also be ongoing changes in average E/RTK from routing changes ( T%E Ariva Terminal Arspace
e Many changes are cost-effective and likely to happen without support e remmeAree
— Curvefly [Source: C. Grobler
o o o o o . ® Yinetal (2019)
e Contrails typically form/persist in ice supersaturated atmospheric Sridhar bl (2011) from Dray et al. 2022]
resions 0.08 1 m Sridhar et al (2012)
g 2 % Noppel and Singh (2006)
. : i ) . 3 ¢ Kilma (2005)
o Large horizontally but typically <600m vertically, can often be avoided by changing g
cruise altitude (e.g. Mannstein et al. 2005, Teoh et al. 2020) é 0067
e Literature suggests diversion to avoid ~50% of contrail impact would 2 tos .
require a ~1% increase in fuel use 5
=3
[

o This is approximate — response is not simple or linear with number of flights, changes 0.02
by time of day, operates on different timescales to CO, climate impact reduction, etc.

e ,ett o

a Larger reductions likely more complex (operations/forecasting) 0.00 T

. . . 1. . . 0.0 0.2 O.I4 0?6 0.8 1.0
e Currently no incentive for airlines to avoid contrails Contrail length fraction decrease
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E/RTK: Changes to conventional aircraft designs

Airframes , o Engines
High aspect ratio wing

* Likely 10-15% CO,/RPK reduction Ultra-high bypass ratio (UHBR) turbofan
* Likely 20-28% CO,/RPK reduction

* In development
* In development

(More) composite materials

e Likely 10-12% CO,/RPK reduction Open rotor _
« Already on 787/A350 » Likely around 30% CO,/RPK reduction

 Demonstrators exist, but

BWB/HWB/OFIylng wing , limited benefit over UHBR -
2 IR0 /A S VTl el further development unlikely S0
BEr: 9 large aircraft ) ) i
R Electric/hybrid electric

* Relatively unlikely (high complexity
for given benefits)

* Note design/certification ~ 10 yr, lifetime in fleet ~ 30 yr, production run up to 20yr

o Around 50% of aircraft built now will still be in service in 2050

o The airframes/engines on the next new aircraft generation (2030-35; likely around 14-23% combined fuel eff. improvement over
year-2015 generation; ATA & Ellondee, 2018) will dominate 2050 fleet

e These measures would allow historical rates of fuel efficiency improvement (1-2%/year) to continue
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RTK: demand

* Future aviation demand is uncertain but given projected developments in demand drivers,
global growth is likely (2.4-4.1%/year RTK growth; Dray & Schafer 2021)

 Some policy interventions target demand but these generally focus on short haul flights in

rich

countries - may be limited overall impact

 Ongoing developments in attitudes to flying at a global level are uncertain

-

Year-2023 passenger demand is approaching pre-pandemic levels, freight exceeds them
Survey/focus group work suggests current limited/uneven impact of environmental issues on demand

However, approaching net zero in aviation will require significant changes in fuel, operations, costs,
ticket prices ...

This is likely to have a demand impact

This demand impact in turn will affect the achievability of net zero (reduced demand - less
alternative fuel needed - lower fuel costs - lower ticket prices - more demand - ...)

Need for integrated systems modelling
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Modelling the global aviation system

Aircraft Performance Aircraft Movement Module S fj Global Climate Module
Emissions — 3 £
and Cost Module per flight |} Emissions . Routing 5 Climate impacts
—1 | inventory 1nefﬁcclie§1cy metamodel
B mode
Aircraft performance | Histance
model own : irli Segment . .
Alrl.)o.rt and Airline ﬂigght g Noise and Air
Solve iteratively ! petivity Module _ldewend 82§ Quality Module
I Airline costs model I Airport delay 3 -
(AI M20 15) rl (queueing model) =
OR ‘ 3 E
Segment Flight ” S
IFleet turnover model I flight scheduling Aircraft s ‘% g
o) pti mise p rofit - ‘ demand model size choice 'z ER:
.1 .1 E Simplified £ 8
per airline (Airline | Technology | Fligh] Demand and ] Segment . dispersion B
havi del frequency passenger model
Behaviour Model) Fare Module | demand

OD demand
(gravity model)
Y

Iti /airport ..
| ér}izrii?nilgggl Economic impacts
model

Economic Impacts
Module

Operating costs

Passengers
movements

Airline Behaviour Model

Open source — see www.atslab.org for code, documentation and papers
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Climate modelling for this

Modelling the global aviation system oaper was carried out

using MIT’s APMT model
with AIM outputs (e.g.
Grobler et al., 2019)

* Performance and operating cost model » Aircraft size choice model based on route type, distance,
(conventional/electric/hydrogen/LNG) — demand — estimated from schedule data
based on ICAO/US Form 41 data for 9 * Flight scheduling based on existing schedule structures
size classes * Queueing model for airport delay — affects journey time

* Fleet turnover model/aircraft retirement * E.g. Evans (2008)
curves (Cirium data)

* Net present value model for technology e Gravity model for city-city demand based on income, population,
adoption fare, other characteristics

* Fuels module for fuel costs, resource use * Itinerary choice model to get airport/route choice based on fare,
and supply time, flight legs, frequency (from Sabre demand/routing data)

« E.g. Al Zayat et al (2017); Dray (2013); * Fare modelled as a function of operating cost, competition level,
Dray et al. (2018); Dray et al. (2022) capacity constraints etc.

* E.g.Drayetal. (2019); Dray & Doyme (2019); Wang et al. (2018)
Open source — see www.atslab.org for code, documentation and papers
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Comparing single

e Historical data -~ Hydrogen pathway === Biofuel pathway
fu e | a t h Wa S - Fossil kerosene only === PTL pathway
p y 416 Airbus, 2021 0.20 - () Ticket price _ 30 A (c) Fossil kerosene
X Boeing, 2021 = ]
* Example for a demand = 3 58 015 W g 2
scenario close to = |@RIK g = 2 201
Airbus/Boeing projections Y 2] 5 0101 e 157
& 2 o = 10
 Comparing impacts of L 1 = 50,05 - Z
4
mandated uptake of 0 = 000 0
individual fuel pathways 304 (d) Alternative fuel use E 12000 (e) Indirect electricity use 7000 - () Number of plants
= : i v 2
*  Drop-in biofuel g 25 10000 - g5 2%3 :
*  Drop-in PTL 3 207 8000 - 2.8 4000 4
*  Hydrogen aircraft ‘%’ 13 i 6000 - § ‘;’_’ 3000 -
c = 1 4000 - S ]
* Drop-in fuels: assumed 5 E 5 2000
Z 5 2000 Z =

1000
0 0 J

global SAF mandate

Well—to—wake CO,, M¢ Fuel production electricity,

increasing to 100% in 2050 5 2.0 - (g) Plant investment costs (h) WTW CO, emissions ’% 4000 4 () WTW CO,eq emissions
*  Note proposed EU/UK £:8 - , 2000 =
mandate levels in 2050: SEQ 1500 - 2 3000 1
68/70% e =
2E2= 10- 1000 S 2000 -
* Hydrogen aircraft: assumed gg £ . S
. o o B -
new aircraft purchase ERRE 500 1 = 100
requirement (5-year phase- 0.0 — . 0 — = 9 ———r
in from EIS) 2000 2010 2020 2030 2040 2050 2000 2010 2020 2030 2040 2050 2000 2010 2020 2030 2040 2050
Year Year Year

[Source: Dray et al. 2022]
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Single fuel pathways — some conclusions

Biofuel pathway has the lowest cumulative CO, due to earlier assumed scale-up

* However, this assumes that aviation has priority access to biomass and that rapid scale-up is possible, which may
not be the case

 E.g. WEF (2020) project maximum 2050 availability for aviation of 21.7 EJ fuel — less than projected here
 Still substantial fuel lifecycle CO, and tank-to-wake non-CO, even at 100% use
* Largest year-2050 ticket price impact (+20%) — reflects that increasing supply requires higher-cost biofuels

Initially high costs and low supply constrain PTL uptake
» Significantly lower costs/faster scale-up potential projected for 2040s, but cumulative GHG still high
* Key uncertainties: electricity prices/carbon capture costs

* Requires >8,000 TWh renewable electricity/year
e 2021 total global renewable electricity generation: 8,300 TWh (IEA, 2021)

For hydrogen aircraft, 2035 entry into service + fleet turnover means that maximum
hydrogen share in 2050 is around 50% (by energy used)

* Not a feasible 2050 net zero pathway unless emissions from the remaining kerosene fleet addressed

*  Non-CO, impacts remain from both hydrogen and kerosene aircraft

To address these issues, combinations of pathways and additional operational strategies
are needed
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Combined pathways ..

(b) Biofuel + Hydrogen (CO,eq)

(a) Biofuel + PTL (CO,eq)

: . g E/RTK: Energy intensit : - Baseline: fossil keros 1
* We consl d er: g 4000 1 RTK: Air tl'anzportationydemand --------- . — BS;ZHEZ atoconst.e ;(;:1?1;(()) ?9yﬂeet efficiency ~_BQSe
. . . &) COseq/E: Climate intensity of fuels === Combined pathways
o =
Biofuel as a bridging fuel to =
PTL g
. N ) |
* Biofuel as a bridging fuel to S o0 A e [
hydrogen ? 5
- . . S “Mainjng .
° Both with contrail avoidance T 1000 - Noncp gl | \/ = & Noncp
2
* Mandates assumed as before
0
° Pote ntia | to red uce ye ar- (c) Biofuel + PTL (investment costs) (d) Biofuel + Hydrogen (investment costs)
2.0

2050 | ife CyCIe G H G 2% of year-2019 globalGDP

emissions 46-69% %3 |woeaepeies T 4
compared to year-2019

 CO, reduced by 89-94%

 Biofuel demand now below
WEF maximum estimates,
but still need 6,000-8,000
TWh electricity

* We project total investment
needed of around $2 tin [Source: Dray et al. 2022]

1% of total required energy
1.5  transition investments for a
1.5 °C pathway (IRENA, 2021)

O
0
=

1.0 <
8&,

PTL (electrolysis and storage)

costs, tln US$2020

\
Q‘Q

Cumulative discounted
yearly plant investment

cmc'\“ﬁ

O . 5 N YTL (6\6

Biofuel Biofuel

O-O I I | I I I I I | I I I
2020 2025 2030 2035 2040 2045 2050 2020 2025 2030 2035 2040 2045 2050

Year Year
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In conclusion: aviation pathways towards net zero?

Approaching net zero within the aviation sector (without stopping flying) requires changing fuel
* Given timelines/constraints on supply possible options are biofuel + PTL, or biofuel + hydrogen
* Both require significant investment (~S$2tln), infrastructure build-up, and development of technologies at low TRL
* Long timeframes, cumulative emissions - predictable long-term incentives needed now
* Whilst efficiency measures will likely happen without support, alternative fuels/contrail avoidance not cost-effective on
their own initially and will require policy support
* Net zero climate impact requires addressing non-CO,
* Significant reductions possible but uncertain from contrail avoidance + change of fuel
* Going beyond the level of contrail avoidance modelled here could be more disruptive
* Only battery electric aircraft have no (direct) non-CO, impacts — but long-haul use not feasible in 2050

e Ticket price impacts may be relatively small (<20% in 2050)
* However, given low airline profitability, transition period might still be difficult for airlines

* Easier transition at lower fuel demand — although operations/mode shift/efficiency/demand reduction may not be enough
individually, they can help enable the fuel transition

* Many key uncertainties (costs, supply, climate impact, future technology capabilities, attitudes to aviation, ...)
* Many ongoing studies — e.g. UCL's ToZCA (Towards Zero-Carbon aviation)
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More information: www.atslab.org
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e Historical data == Biofuel + hydrogen pathway
Biofuel + PTL pathway == Biofuel only pathway
35 - - 30 4 -
A TATA, 2020 (base) %00 (b) FTK — Al 0.20 - (c) Ticket price (d) Fossil kerosene use
30 { o IATA, 2020 (range) - - Fucighters 8 25
<& Airbus, 2021 - 5
= 259 % Boei 3 | 2
5 oeing, 2021 £ 600 a g 015 5 50
é 20 _:v-4 8 (o] [5)
Y Ta@rek E £2 g s
15 1 ;400 = = 0.10 o
N M Q )
x = % 4 i
SERTE = = z 107
200 0.05 4
° 5 2 5 9
Annex: combine
° 0 0 0.00 0
30 1 — Biofuel 30 1 (f) Hydrogen use 14000 - In electric aircraft 7000 - (h) Number of plants
° = = PTL = In fuel production
g 25 : _ 251 = 12000 ‘ | 22 6000 -
N (e) Drop—in SAF use 55 = (g) Indirect electricity use ==
g i N ] &= 10000 £ 25000
2 20 g 20 5 3=
3 E 2 | = 0
5 15 5 15 2, 8000 £ g 4000
central demand
i i = =)
) g 10 E g 40001 E < 2000 -
[a) =
5 5 2000 - “= 1000
[ ] [ ]
additional ; : ) o m x
2.0 1 (i) Plant investment costs (G) WTW CO, 30 (k) Contrail RF 2000 2020 2040
3 < S 2000 ' Year
S = & ]
1 555 15 S P 020 {ORF
Ille rICS 2E2 O 1500 2 & 50
22 ) — .
S % =5 o 015
2Z2= 10 S £%5 15 £
£E= 1 1000 - g z 0.10
ER N I 210 w
g 3 0.5 1 3 5004 ~ 0.05
&} = 0.5 1
0.00
2 0.0 e 0 = 00
§ 5000 4 (m) WTW CO,eq (GWPs) § 5000 4 (n) WTW COzeq (GWPj¢0) § 5000 4 (0) WTW COzeq (GWPs09) 0.10 q (p) Temperature change
<) &) &)
= 4000 = 4000 = 4000 0.08
2 = =
2 3000 - 8 3000 A g 3000 O 0.06
8 o) o 1
Q O <
2 2000 o 2000 1 o 2000 0.04
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® E= E=
L 1000 - T 1000 - I 1000 -/\r\ 0.02 |
& I I
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@ Historical data = Biofuel + hydrogen pathway
Biofuel + PTL pathway = Biofuel only pathway
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5 oeing, 2021 g 600 a gl 2 20
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= @R S a 2 4
15 4 400 £ =010 g 15
& E K Z 10
10 1 B =
° 200 0.05 2
Annex: combined . L
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5 25 25 < 12000 2 2 6000
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e Historical data == Biofuel + hydrogen pathway
Biofuel + PTL pathway == Biofuel only pathway
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