

Low Emission Aviation Program (LEAP)

Transitioning towards a "net-zero" future for aviation

Pervez Canteenwalla, Program Leader

National Research Conseil national de Council Canada recherches Canada

- 18msq.kmwith six time zones
- 160 million PAX (2019)

- 100,000 employees
- \$24Bin GDP (2021)
- #1 Canada manufacturing sector for R&D intensity

2

WHAT WE DO

WE ADVANCE SCIENTIFIC AND TECHNICAL KNOWLEDGE WE SUPPORT GOVERNMENT POLICY OBJECTIVES

WE SUPPORT BUSINESS INNOVATION

Two primary streams of activity

1) Research performer (national labs)

14 research centres

\$871.1M total expenditures

24 laboratory

locations

1,187 peer-reviewed

publications

14 collaborative programs

126 major R&D facilities

\$169.8M total revenues

1,855 active patents (441 patent families)

2) Advice and funding to SME innovation projects

Industrial Research Assistance Program (NRC IRAP)

262	106	\$468M	3,657	11,198
ITAs	locations	Gs&Cs funding invested in SMEs	total firms funded	advisory services to unfunded firms

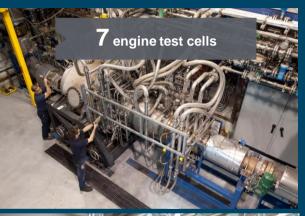
Macro Summary Results (2020-21)

NRC Research Centres

DIGITAL TECHNOLOGIES	Digital Technologies		
EMERGING TECHNOLOGIES	 Advanced Electronics and Photonics Herzberg Astronomy and Astrophysics Metrology Nanotechnology Security and Disruptive Technologies 		
ENGINEERING	 Construction Energy, Mining and Environment Ocean, Coastal and River Engineering 		
LIFE SCIENCES	 Aquatic and Crop Resource Development Human Health Therapeutics Medical Devices 		
TRANSPORTATION AND MANUFACTURING	Aerospace Automotive and Surface Transportation		

LEAP leverages non-aerospace expertise from across NRC

Aerospace Research Centre Facilities



Aerospace Specialization and Focus Areas

Aero RC offers deep experience and capabilities in:

2

Structures and materials

Aerospace manufacturing

Aerodynamics

Propulsion

Flight research

Focus Areas and Programs

Low Emission Aviation

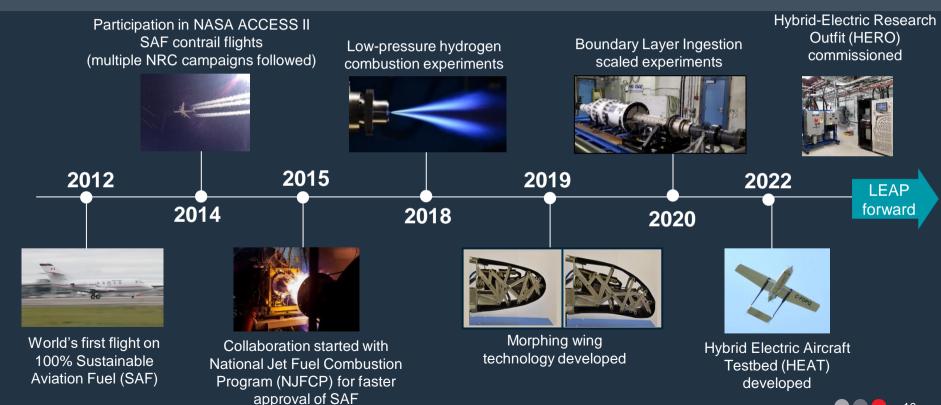
Integrated Aerial Mobility

Aeronautical Product Development & Certification

Advanced Digital Aerospace Manufacturing

Defence Technology Sustainment

Air Travel Research


One Size Doesn't Fit All

		State of the Art		Need for Larger Aircraft
+-	BATTERY	~170 Wh/kg	x4	>700 Wh/kg
	MOTORS	~2.5 MW & 5 kW/kg	x2	>5 MW & 13 kW/kg with >98% efficiency
P	SAF	~\$5/L	÷5	~\$1/L
Z	NOVEL AIRCRAFT CONFIGURATIONS	Lab-scale demo		Flight demonstrators
	H2 STORAGE EFFICIENCY (mass of fuel / total mass of tank + fuel)	~14.5% (liquid)	x2	>35%

Sustainable Aviation at the NRC – The past decade

1<u>0</u>

Low Emission Aviation Program (LEAP) Focus Areas

Vision: To accelerate the transition to "Net-Zero" for Canada's aviation industry and strengthen our position as a clean tech leader. Advancement of technologies Develop, evaluate, and Demonstrate the integration Advancement of safety and integrate low emission of the electric engine to and safe operation of key suitability of battery technologies safely into improve its performance and enabling ground and on-board technologies to enable aircraft technologies for hydrogen, H2-mixtures, and SAF based aviation applications reliability as well as methods electrification for integration in the aircraft, testing and certification propulsion & power generation systems that meet the stringent technical, safety, and regulatory requirements of airborne applications Aircraft Electrical **Clean Fuel Batteries** in Technology Technologies Aviation **Systems** Integration Modeling & Simulation Technology Demonstrator Safety & Certification

Aircraft Technology Integration

Adaptive

Technology Performance & Emission Assessments (SAF, H2, electric)

Next Generation Aircraft Configurations

Technology Demonstrators

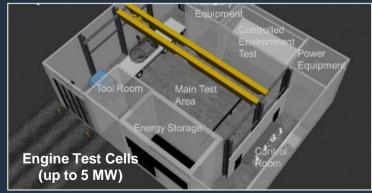
NRC Morphing Materials



Source: GKN Aerospace

Electrical Systems

Hybrid-Electric Demonstrations


Reliability, Safety and Certification

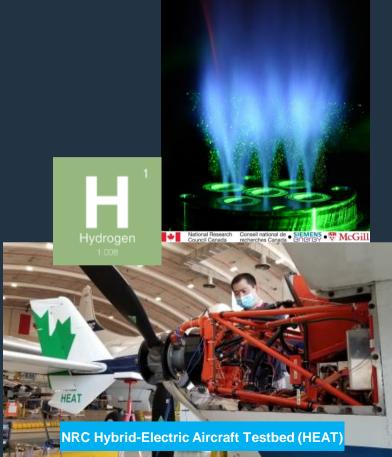
Efficient High-Power Electrical Propulsion Technology Advancement

Proposed MW-scale facilities for HE system development

13

Clean Fuel Technologies

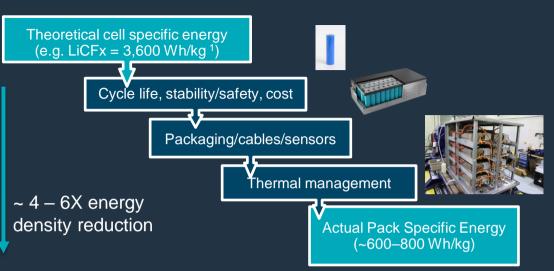
Hydrogen Storage Systems & Operations


Hydrogen Safety & Certification

Fuel Cell Propulsion

SAF and Hydrogen Combustion Technologies

Continuing SAF Investigations


Hydrogen Investigations

Batteries in Aviation

Battery Performance & Technology Demonstration

Battery Management & Health

Certification Methodologies

1 Viswanathan, V., et al. "The challenges and opportunities of battery-powered flight", Nature, 2022.

HEAT II Battery Thermal Runaway Safety System Validated

January 2020

One year later: February 2021

Iteration 1: Large Scale Loss of Containment Iteration 3: Thermal Runaway Completely Contained

Will take a multi-sectoral approach with all stakeholders involved (fuel/electricity producers, airports, regulators, OEMs, etc.) from industry, academia, and government.

Academia

Government

17

Thank you

Pervez Canteenwalla • Program Leader, Low Emission Aviation Program (LEAP) • pervez.canteenwalla@nrc-cnrc.gc.ca

nrc.canada.ca • info@nrc-cnrc.gc.ca