Numerical Analysis of CROR Propulsion System Aerodynamics & Aeroacoustics at DLR

Arne Stuermer & Jianping Yin
Institute of Aerodynamics & Flow Technology
DLR Braunschweig
Germany

2nd UTIAS-MITACS International Workshop on Aviation & Climate Change
May 27th-28th, 2010
UTIAS
Toronto, Canada
Overview

- Introduction and Motivation
- DLR-AS CROR Activities Overview
- Generic Research Geometry and Test Case Definition
- Aerodynamics & Aeroacoustics @ Low-Speed and High-Speed:
 - Numerical Tools and Approaches
 - Flow Physics Analysis and Comparison
- Conclusion and Outlook
Introduction and Motivation

- Cost of fuel has lead to a renaissance of the Contra-Rotating Open Rotor (CROR)
- Propfans studied in NASA/US Industry Advanced Turboprop Project (ATP)
 - Comprehensive research on aerodynamics and aeroacoustics, demonstrating significant efficiency benefits
- Flight tests of prototype engines on McDonnell Douglas MD-80 and Boeing 727
- Close to EIS in 1990s on proposed McDonnell Douglas MD-90XX & Boeing 7J7
- Drop in fuel prices lead to waning of interest for airlines
- Concern about high fuel costs are back (‘08: 33% of TOC; ’98:9.4% of TOC)
- Installation, noise and certification issues still remain:
 - Modern methods could play vital role in realizing full potential of CRORs for EIS ~2020
DLR CROR Activities Overview

- History of experimental & numerical analysis, design & testing of propellers and helicopters

- DLR-AS CFD-based analysis experience built up during the past 7 years
 - Coupled CFD-CAA (TAU/APSIM) analysis process chain established
 - Cooperation with Industry on SRP-related topics
 - EU FP6 project CESAR (Cost Effective Small AiRcraft)
 - CROR activities since 2007
 - Generic studies based on in-house designed research configurations
 - Cooperation with & contract work for airframe and propulsion industrial partners
 - DLR-AT/AS involvement in EU FP7 project DREAM (valiDation of Radical Engine Architecture systeMs)
 - Associated Partner in CROR activities in JTI SFWA WP2.2
 - Partnership with industry in nationally funded projects
Research Geometry: Sizing, Nacelle and Pylon

- Generic CROR to test and mature numerical methods and approaches and improve understanding
- Sized for 150-seat aircraft:
 - TO-thrust ~88kN
 - Cruise thrust ~19kN
- D=14ft/4.2672m propeller
- Family of blade designs
 - 8- & 10-blade front rotor
 - 14ft & 11.9ft 8-blade aft rotor
 - Generic pylon
- CATIA V5-CAD model and mesh generation setup for flexibility in terms of configuration variations
Systematic Configuration Studies

- Investigation of configuration impact on performance and noise
- Blade number variation: 8x8 to 10x8
- Aft rotor diameter reduction to eliminate tip vortex impingement
- Addition of pylon to investigate installation effect impact
- Representative performance levels:

<table>
<thead>
<tr>
<th>Cruise Performance of 10F2x8AC1 CROR</th>
<th>M=0.75 @ h=35,000ft; J₁=3.678, J₂=4.203</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rotor 1</td>
</tr>
<tr>
<td>F₁ [N]</td>
<td>10,566</td>
</tr>
<tr>
<td>η [%]</td>
<td>79.72</td>
</tr>
</tbody>
</table>
Numerical Approach: Geometry & Mesh Generation

- Unstructured/structured mesh generation with CentaurSoft Centaur and ICEM CFD HEXA
- 19-21 mesh blocks used to fully exploit flexibility of Chimera approach
- Hub PCM geometry introduced to allow flexible adjustment of blade pitch angles
- Special care taken at Chimera boundaries and for viscous sublayer resolution
- Rotor Chimera boundary can serve as interface to aeroacoustic tools
- Total mesh sizes ~45,000,000 nodes
Test Case Definition: Low-Speed Cases

- Take-Off @ SL and M=0.2, α=0º
- Identical propeller rotational speeds
- TAU engine boundary condition to simulate realistic inlet and jet flows
- Blade settings for a 50:50 power split

<table>
<thead>
<tr>
<th></th>
<th>Core engine exhaust</th>
<th>(n_1=n_2) [rpm]</th>
<th>(J_1=J_2)</th>
<th>(\beta_{75,R1}^\circ)</th>
<th>(\beta_{75,R2}^\circ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8F1x8A1</td>
<td>(p_t/p_0) 1.3</td>
<td>(T_t/T_0) 3.0</td>
<td>1029</td>
<td>0.953</td>
<td>37.6</td>
</tr>
<tr>
<td>10F1x8A1</td>
<td>(p_t/p_0) 1.3</td>
<td>(T_t/T_0) 3.0</td>
<td>1029</td>
<td>0.953</td>
<td>36.5</td>
</tr>
</tbody>
</table>
The DLR TAU-Code
Code Description and Simulation Approach

- Unstructured finite volume Euler/RANS-flow solver
- All standard state-of-the-art CFD techniques available:
 - Central and upwind schemes for spatial discretization
 - Scalar or Matrix dissipation
 - Multistage Runge-Kutta time-stepping, LUSGS
 - Convergence acceleration through MG, residual smoothing, local time-steps
 - 1- and 2-equation turbulence models (SAE,k-ω SST)
- Chimera grid approach & extensive motion libraries for rotating propeller computations
- Dual time stepping scheme for unsteady computations
- Efficiently parallelized for fast-turn around times through distributed computing

- Typically ~6 rotor revolutions computed on 256-384 CPUs of DLR C²A²S²E-cluster
- Runtime ~ 14-21 days wallclock
Rotor Performance

<table>
<thead>
<tr>
<th></th>
<th>8F1x8A1</th>
<th>10F1x8A1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rotor 1</td>
<td>Rotor 2</td>
<td>Total</td>
</tr>
<tr>
<td>F_x [N]</td>
<td>42,994</td>
<td>45,233</td>
<td>88,226</td>
</tr>
<tr>
<td>C_T</td>
<td>0.3782</td>
<td>0.3979</td>
<td>-</td>
</tr>
<tr>
<td>C_P</td>
<td>0.6253</td>
<td>0.6203</td>
<td>-</td>
</tr>
<tr>
<td>η [%]</td>
<td>57.67</td>
<td>61.17</td>
<td>59.42</td>
</tr>
</tbody>
</table>

- 8x8 CROR shows 16/32 cycle oscillations in rotor loads
- $F_x=88.226$ kN; $C_{T,1}/C_{T,2}=0.9523$; $C_{P,1}/C_{P,2}=1.0042$
- Larger amplitudes in aft rotor
- 50:50 power split leads to higher aft rotor thrust
- Better efficiency in aft rotor

- 10x8 configuration has constant rotor loads
- $F_x=88.309$ kN; $C_{T,1}/C_{T,2}=0.9909$; $C_{P,1}/C_{P,2}=1.0017$
- 10x8 more thrust for rotor 1, less for rotor 2 than 8x8
- 10x8 less power for rotor 1 and rotor 2
Slipstream Development: Blade Wakes @ r/R=0.85 10x8 CROR

- Strong blade wakes, quite well resolved in simulations
- Good functionality of Chimera boundary condition, with smooth transition of contour lines (blade-rotor, rotor-rotor, rotor-nacelle)
- Mutual interactions between rotors:
 - Aft blades influenced by forward rotor blade wakes
 - Aft blade wakes interact with “sliced” forward blades wakes
 - 16-cycle oscillations seen on forward blades pressure side Mach number distributions
 - Small Mach number fluctuations upstream of front rotor
Slipstream Development: Dynamic Pressure Profiles

- 3 axial wake profiles at r/R=0.4
- Dynamic pressure increases after first and second rotor
- R1 Blade wakes:
 - Stronger for 8x8 CROR
- R1 potential flow:
 - Stronger for 8x8 CROR
- R2 potential flow seen in fluctuation of wake profiles
- Two important sources of interaction tone generations
Slipstream Development: Tip Vortex Trajectory

- Investigation of front rotor tip vortex impact on aft rotor blades on noise emissions
- Comparison of vortex track for 10F1x8A1 & 8F1x8A1 CROR:
 - Stronger front rotor slipstream contraction for the 8x8 CROR due to higher blade loadings
 - Vortex impact on aft rotor occurs @ r/R=0.9 for 10x8 and r/R=0.88 for 8x8
- Guide for blade design of reduced diameter aft rotor
 - 8AC1-blade has a 15%-crop in diameter
Blade Load Distributions: 8F1x8A1 vs 10F1x8A1

CROR

- Different blade load distributions, higher in R2 in each case
- Blades more highly loaded for 8F1x8A1
- Blades show force oscillations linked to rotor-rotor blade passage
- Front blade wakes lead to full spanwise fluctuations on aft blades (pronounced at hub and tip)
- Rotor 1 blade shows smaller oscillations
- Tip vortex impact on aft blades is dominant
Blade Force Development
Low-Speed Conditions

- Higher blade thrust loadings in both rotors for the 8x8 configuration
- Higher aft blade loadings in each case
- Fluctuation amplitudes for aft blades more pronounced
- 8x8 fluctuation amplitudes greater
- Aft blades shows 16/20-cycle fluctuations (i.e. \(2B_F\))
- Front blades shows 16/32 cycle oscillations (i.e. \(2B_A\) and \(4B_A\))

- FFT Analysis of blade thrust loading:
 - Dominant \(2B_F\) fluctuations for aft blades
 - Importance of higher harmonic thrust oscillations of front blades
Aeroacoustic Analysis: Tools & Approach

- Noise radiation analysis using APSIM (Acoustic Prediction System based on Integral Method)
 - Rotor & Propeller Noise
 - Permeable or Impermeable FW-H

![Diagram]

CFD (TAU) output = FW-H input data surface

- Virtual microphones oriented around front prop center
- Nearfield mic array @ x/D=0.688 (~ pylon length)
- Farfield virtual mic array @ x/D=10
- Farfield azimuthal mic array @ r/D=10

![Diagram]
Aeroacoustic Analysis: Permeable FW-H Approach
Nearfield Noise Radiation @ LS

- Characteristic noise radiation signature known from literature
 - Max. noise due to rotor-alone tones near rotor planes (mono- & dipole)
 - Slightly higher noise near aft rotor due to higher loading & interactions
 - ~5dB peak noise difference between 10x8 and 8x8 configuration

- Front rotor plane spectrum:
 - Good match between FW-H and CFD for f<800Hz
 - Strong rotor fundamental tones and 1st & 2nd order interaction tones
Aeroacoustic Analysis @ LS
Near- & Farfield Noise Radiation

- Highest noise levels for both configurations in vicinity of rotor planes, with peaks closest to aft rotor
- Noise levels higher for 8x8 at most microphone locations

- 10x8 near-field directivity decomposition:
 - Rotor tones dominate in vicinity of planes of rotation
 - Interaction tones very important for polar angles towards the rotational axis

- 10x8 far-field directivity decomposition:
 - Interaction tones are major noise source
 - Rotor tone levels in farfield reduced more notably than interactions tones
Test Case Definition: Cruise

- Cruise @ h=35,000ft, M=0.75 & α=0°
- Identical propeller rotational speeds
- TAU engine boundary condition to simulate realistic inlet and jet flows
- Blade settings for an equal blade power absorption for the 10F1x8A2 configuration (i.e. power split of 1.25:1/56:44), identical disc power loading for the 10F2x8AC1 (1.45:1/59:41)

- 10F2x8AC1 CROR:
 - F_x=18.990 kN
 - C_{P,1}/C_{P,2}=1.4471

- 10F1x8A2 CROR:
 - F_x=19.103 kN
 - C_{P,1}/C_{P,2}=1.2488

<table>
<thead>
<tr>
<th></th>
<th>Core engine</th>
<th>n_1=n_2 [rpm]</th>
<th>J_1</th>
<th>J_2</th>
<th>(\beta_{75,R1}) [°]</th>
<th>(\beta_{75,R2}) [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p_1/p_0</td>
<td>T_1/T_0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10F1x8A2</td>
<td>1.5</td>
<td>3.1</td>
<td>850</td>
<td>3.678</td>
<td>3.678</td>
<td>61.95</td>
</tr>
<tr>
<td>10F2x8AC1</td>
<td>1.5</td>
<td>3.1</td>
<td>850</td>
<td>3.678</td>
<td>4.327</td>
<td>61.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>10F1x8A2</th>
<th>10F2x8AC1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotor 1</td>
<td>Rotor 2</td>
<td>Total</td>
</tr>
<tr>
<td>Rotor 1</td>
<td>Rotor 2</td>
<td>Total</td>
</tr>
<tr>
<td>F_x [N]</td>
<td>9,972</td>
<td>9,131</td>
</tr>
<tr>
<td>C_T</td>
<td>0.3934</td>
<td>0.3603</td>
</tr>
<tr>
<td>C_P</td>
<td>1.8381</td>
<td>1.4719</td>
</tr>
<tr>
<td>(\eta) [%]</td>
<td>78.73</td>
<td>90.03</td>
</tr>
<tr>
<td></td>
<td>10,566</td>
<td>8,424</td>
</tr>
<tr>
<td></td>
<td>0.4169</td>
<td>0.6368</td>
</tr>
<tr>
<td></td>
<td>1.9235</td>
<td>1.1031</td>
</tr>
<tr>
<td></td>
<td>79.72</td>
<td>91.98</td>
</tr>
</tbody>
</table>
Slipstream Development: Swirl Recovery

- Comparison of swirl for 10F2x8AC1 & 10F1x8A2 CROR:
 - Good swirl recovery for both configurations
 - Similar front rotor loadings result in similar slipstream swirl distribution
 - Cropped aft blade “misses” tip swirl recovery
Blade Pressure Distributions
10F2x8AC1

- Front blade is affected by aft blade potential flow field
- Notable pressure fluctuation visible on pressure side, in particular near the tip
- Full span transonic flow on blade suction side
 - Shock @ x/c~0.2 near the root
 - Shock near TE towards the tip
 - No notable impact of unsteady blade-blade interactions on front rotor transonic flow (shock strength & location constant)
Blade Pressure Distributions
10F2x8AC1

- Aft blade is strongly affected by front rotor blade wakes
- Pressure and suction side show 20-cycle oscillations
- Apparent residual influence of front rotor tip vortex passage over blade tip
- Strong hub fluctuations due to PCM/blade root vortex
Blade Force Development
Cruise Conditions

- Fluctuation amplitudes for aft blades more pronounced in each case
 - Larger amplitudes for 10F1x8A2 CROR due to tip vortex impingement

- Aft blades show 20-cycle fluctuations, i.e. $\@ 2B_F$
 - Larger amplitudes for 10F1x8A2 CROR due to tip vortex impingement

- Front blades show 16-cycle oscillations, i.e. $\@ 2B_A$
 - Slightly larger amplitudes for 10F1x8A2 CROR due to full-span potential flow impact of aft rotor blades
Aeroacoustic Analysis: Nearfield Directivities

- Front rotor plane shows similar OASPLs for both configurations
 - Mean loadings near-identical → Mono- and di-pole noise similar
 - Only small differences in unsteady loadings → Unsteady loading noise similar
- Slightly higher OASPLs for 10F1x8A2 CROR in aft rotor plane
 - Unsteady loading noise dominates steady loading noise
Aft rotor plane noise emissions dominated by B_A and its higher harmonics

- Slightly higher SPL @ $n*B_A$ for 10F1x8A2

At low-speed conditions spectrum in the aft rotor plane also shows importance of interaction tones
Aeroacoustic Analysis:
Nearfield Noise Spectra @ x/D=-0.5

- Forward noise radiation at cruise limited to rotor BPF contributions
 - Slightly higher SPL @ B_A for 10F1x8A2
 - Much richer spectrum and higher levels throughout at low-speed conditions
 - Interaction tones dominate
Installation Impact @ Cruise: Blade Forces

- Installation impact for identical blade settings as the isolated case leads to increased mean loadings
- Azimuthal variations of blade loadings due to local interaction with pylon wake
 - Wake increases the effective blade angle of attack
Installation Impact on Blade Pressure Distributions

- Front blade affected by aft blade potential flow
- Notable pressure fluctuation visible on pressure side, in particular near the tip
- Full span transonic flow on blade suction side
- Pylon wake leads to local increase in blade angle of attack
 - Strong impact on suction side transonic flow
- Global effects are azimuthal blade loading variations
Conclusions & Outlook

- Established process chain for coupled Hi-Fi TAU uRANS & aeroacoustic simulations with the DLR APSIM code allows for an in-depth analysis, enhancing understanding of complex interactions
- Better understanding of requirements for good quality data
- Outlook on planned future activities:
 - CROR configuration/operating point studies, 1P-Loads & installation effects
 - Passive and active noise control technologies: Pylon and front rotor blade trailing edge blowing; front rotor blade trailing edge serrations (DLR-AT)
- Perspective:
 - Maybe Hi-Fi CFD and CAA can contribute to making Open Rotor work this time around
Numerical Analysis of CROR Propulsion System Aerodynamics & Aeroacoustics at DLR

Arne Stuermer & Jianping Yin
Institute of Aerodynamics & Flow Technology
DLR Braunschweig
Germany

2nd UTIAS-MITACS International Workshop on Aviation & Climate Change
May 27th-28th, 2010
UTIAS
Toronto, Canada